首页 > 其他分享 >11111111111

11111111111

时间:2023-05-25 15:22:38浏览次数:39  
标签:11111111111 crop start abs transforms img2 img1

import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from torchvision import transforms
from math import sqrt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"


# 读取两张图像
img1 = Image.open('img/low/1.png')
img2 = Image.open('img/low/22.png')
# 转换为[N, C, H, W]张量形式
# transform = transforms.Compose([
#     transforms.Resize((256, 256)),
#     transforms.CenterCrop((224, 224)),
#     transforms.ToTensor()
# ])

# if img1.size != img2.size:
#     new_size = min(img1.size, img2.size)
#     transform = transforms.Compose([
#         transforms.Resize(new_size),
#         transforms.CenterCrop((224, 224)),
#         transforms.ToTensor()
#     ])
# else:
#     transform = transforms.Compose([
#         transforms.Resize((256, 256)),
#         transforms.CenterCrop((224, 224)),
#         transforms.ToTensor()
#     ])
#
#
# img1 = transform(img1).unsqueeze(0)  # 添加批次维(N=1)
# img2 = transform(img2).unsqueeze(0)  # 添加批次维(N=1)

if img1.size != img2.size:
    new_size = min(img1.size, img2.size)
    transform = transforms.Compose([
        transforms.Resize(new_size),
        transforms.CenterCrop((224, 224)),
        transforms.ToTensor()
    ])
    img1 = transform(img1).unsqueeze(0)
    img2 = transform(img2).unsqueeze(0)
else:
    transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.CenterCrop((224, 224)),
        transforms.ToTensor()
    ])
    img1 = transform(img1).unsqueeze(0)
    img2 = transform(img2).unsqueeze(0)

# assert img1.size() == img2.size()
# _, c, h, w = img1.size()
# h_crop = int(h * sqrt(1.0))
# w_crop = int(w * sqrt(1.0))
# print(h_crop)
# print(w_crop)
# h_start = h // 2 - h_crop // 2
# print(h_start)
# w_start = w // 2 - w_crop // 2
# print(w_start)

lam = 1 # np.random.uniform(0, 1.0)
img1_fft = torch.fft.fft2(img1, dim=[2, 3])
img2_fft = torch.fft.fft2(img2, dim=[2, 3])
img1_abs, img1_pha = torch.abs(img1_fft), torch.angle(img1_fft)
img2_abs, img2_pha = torch.abs(img2_fft), torch.angle(img2_fft)
img1_abs = torch.fft.fftshift(img1_abs, dim=[2, 3])
img2_abs = torch.fft.fftshift(img2_abs, dim=[2, 3])
# img1_abs[h_start:h_start + h_crop, w_start:w_start + w_crop] = lam * img2_abs_[h_start:h_start + h_crop, w_start:w_start + w_crop] + (1 - lam) * img1_abs_[h_start:h_start + h_crop, w_start:w_start + w_crop]
# img2_abs[h_start:h_start + h_crop, w_start:w_start + w_crop] = lam * img1_abs_[h_start:h_start + h_crop, w_start:w_start + w_crop] + (1 - lam) * img2_abs_[h_start:h_start + h_crop, w_start:w_start + w_crop]
img1_abs = lam * img2_abs + (1 - lam) * img1_abs
# img2_abs = lam * img1_abs_ + (1 - lam) * img2_abs_

img1_abs = torch.fft.ifftshift(img1_abs, dim=[2, 3])
img21 = img1_abs * (torch.exp(1j * img1_pha))
img21 = torch.real(torch.fft.ifft2(img21, dim=[2, 3]))

img21 = torch.clamp(img21, 0, 1) * 255.0
img21 = img21.squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8)
# 展示原始图像和重构图像
plt.subplot(221), plt.imshow(img1[0].permute(1, 2, 0)), plt.title('Original Image 1')
plt.axis('off')
plt.subplot(222), plt.imshow(img2[0].permute(1, 2, 0)), plt.title('Original Image 2')
plt.axis('off')
plt.subplot(223), plt.imshow(img21), plt.title('Reconstruct Image 1')
plt.axis('off')

plt.show()
plt.savefig('mix', bbox_inches='tight')

 

标签:11111111111,crop,start,abs,transforms,img2,img1
From: https://www.cnblogs.com/yyhappy/p/17431391.html

相关文章

  • [vue项目] 后台管理 11111111111111111
    文章目录​​gitee地址​​​​登录业务解析​​​​退出登录​​​​模板结构图​​​​路由的搭建​​​​品牌管理​​​​table数据渲染​​​​分页器​​​​点击添加......
  • 111111111111111111
    测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测......
  • wireshark 11111111111111111
     wireshark抓包过滤器语法及示例=====================================================================BPF语法(BerkeleyPacketFilter),基于libpcap/wincap库语句......
  • tcpdump 1111111111111111111111111
     tcpdump命令格式、参数====================================================================================================================tcpdump[-AdDe......