首页 > 其他分享 >点积、内积、外积、叉积、张量积——概念区分

点积、内积、外积、叉积、张量积——概念区分

时间:2023-06-11 11:32:16浏览次数:42  
标签:张量积 product 点积 内积 外积 空间 向量

  找张量积概念的时候,被各种野路子博客引入的各种“积”搞混了,下面仅以Wikipedia为标准记录各种积的概念。

点积(Dot product)

  https://en.wikipedia.org/wiki/Dot_product

  在数学中,点积(Dot product)或标量积(scalar product)是一种代数运算,它取两个相等长度的数字序列(通常是坐标向量),并返回一个数字。在欧几里得几何中,两个向量的笛卡尔坐标的点积被广泛使用。它通常被称为欧几里得空间的内积(Inner product),或很少地被称为投影积(Projection product),尽管它不是唯一可以在欧几里得空间上定义的内积

  也就是说,点积是我们通常讨论的欧氏空间中内积的一种特殊形式。点积定义如下:

点积、内积、外积、叉积、张量积——概念区分_向量空间

内积(Inner product)

  https://en.wikipedia.org/wiki/Inner_product_space

  在数学中,内积空间(少部分人称为豪斯多夫-前希尔伯特空间)是实向量空间或具有称为内积的运算的复向量空间。空间中两个向量的内积是标量,通常用尖括号表示,如$<a,b>$。内积允许对直观的几何概念进行形式化定义,例如向量的长度、角度和正交性(零内积)。内积空间推广了欧几里得向量空间,其中内积是笛卡尔坐标的点积或标量积。无穷维内积空间在泛函分析中得到了广泛的应用。复数域上的内积空间有时被称为酉空间。1898年,Giuseppe Peano首次使用了具有内积的向量空间概念。

  内积的定义比较抽象,在此仅对各种积进行区分,不对定义进行记录。它甚至没有单独的词条,是和内积空间放在一起介绍的。在工科的讨论范围内,内积和点积会混在一起说。这是无可厚非的,毕竟点积是内积的一种特殊形式。

外积(Outer product)

  https://en.wikipedia.org/wiki/Outer_product

  在线性代数中,两个坐标向量的外积(Outer product)是一个矩阵。如果这两个向量的维数分别为n和m,那么它们的外积是一个n×m矩阵。更一般地说,给定两个张量(多维数组),它们的外积是张量。张量的外积也被称为它们的张量积,可以用来定义张量代数。向量外积定义如下:

点积、内积、外积、叉积、张量积——概念区分_叉积_02

叉积(Cross product,叉乘)

  https://en.wikipedia.org/wiki/Cross_product

  在数学中,叉积(Cross product)或向量积(Vector product)是在三维欧几里得向量空间中对两个向量的二元运算,用符号表示$\times$。给定两个线性无关的向量$a$和$b$,叉积$a×b$是一个垂直于$a$和$b$的向量,因此垂直于包含它们的平面。它在数学、物理、工程和计算机编程中有许多应用。不应将其与点积(投影积),特别是外积混淆。

  国内总会把叉积和外积混为一谈,即使是中文维基百科也是如此。英文环境里根本就没有把cross product和outer product混在一起说的情况。叉积仅仅定义在三维的欧氏空间中,且需要用到右手定则。

张量积(Tensor product)

  https://en.wikipedia.org/wiki/Tensor_product

  https://www.math3ma.com/blog/the-tensor-product-demystified

  就是外积在张量上的拓展。



标签:张量积,product,点积,内积,外积,空间,向量
From: https://blog.51cto.com/u_15471597/6457331

相关文章

  • 免注意力Transformer (AFT):使用逐元素乘积而不是点积
    注意力机制作为现代深度学习模型的基石,能够毫不费力地对长期依赖进行建模,并关注输入序列中的相关信息。然而,需要点积自注意力-广泛使用在Transformer架构中的一个关键组件-已被证明在序列长度方面具有二次空间复杂度,因此不适用于处理长输入。在本文中,我们介绍了AttentionFree......
  • 向量点积dot,叉积cross product
    点积概括地说,向量的内积(点乘/数量积)。对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量(数量而不是向量)点积(点乘)的几何意义包括:表征或计算两个向量之间的夹角b向量在a向量方向上的投影叉积两个向量的外积,又叫叉乘、叉积向量积,其运......
  • playwright 使用日常知识点积累--不定期补充
    简介:Playwright是由微软公司2020年初发布的新一代自动化测试工具,相较于目前最常用的Selenium,它仅用一个API即可自动执行Chromium、Firefox、WebKit等主流浏览器自动化操作,并同时支持以无头模式、有头模式运行。官网地址:Playwright|Playwright.NET一:Playwright安装及介绍Pl......
  • 点积、内积、外积、叉积、张量积——概念区分
    找张量积概念的时候,被各种野路子博客引入的各种“积”搞混了,下面仅以Wikipedia为标准记录各种积的概念。点积(Dotproduct)https://en.wikipedia.org/wiki/Dot_pro......
  • 向量的加减法与内外积
     假设有两个向量a=(x,y,z)、b=(i,j,k),它们之间的夹角为θ1、加法数学运算:a+b=(x+i,y+j,z+k)例如a=(1,2,4)b=(3,5,6),那么a+b=(1+3,2+5,4+6)=(4,7,10)向量加法符......
  • 矩阵点积
    -以下是用js做了一个矩阵点积的计算:矩阵点积:计算行和列之间的乘积之和,也叫矩阵乘积 第一个矩阵的列数必须等于第二个矩阵的行数。如果第一个矩阵的维度是(m×n),则需要......
  • 转:点积和叉积的数学公式
    线性代数笔记3——向量2(点积) 线性代数笔记4——向量3(叉积) ......
  • 常用知识点积累
     1  javalist转换成Map List<Person>listP=Arrays.asList(person,person1,person2);//根据Pid转换成MapMap<Integer,Person>ma......