首页 > 其他分享 >densenet tensorflow 中文汉字手写识别

densenet tensorflow 中文汉字手写识别

时间:2023-05-31 12:34:59浏览次数:50  
标签:self batch 汉字手写 test train tf tensorflow densenet size

densenet 中文汉字手写识别,代码如下:

 

import tensorflow as tf
import os
import random
import math
import tensorflow.contrib.slim as slim
import time
import logging
import numpy as np
import pickle
from PIL import Image
  
import tensorflow as tf
#from tflearn.layers.conv import global_avg_pool
from tensorflow.contrib.layers import batch_norm, flatten
from tensorflow.contrib.framework import arg_scope
import numpy as np


# Hyperparameter
growth_k = 12
nb_block = 2 # how many (dense block + Transition Layer) ?
init_learning_rate = 1e-4
epsilon = 1e-8 # AdamOptimizer epsilon
dropout_rate = 0.2

# Momentum Optimizer will use
nesterov_momentum = 0.9
weight_decay = 1e-4

# Label & batch_size
class_num = 3755
batch_size = 128

total_epochs = 50


def conv_layer(input, filter, kernel, stride=1, layer_name="conv"):
    with tf.name_scope(layer_name):
        network = tf.layers.conv2d(inputs=input, filters=filter, kernel_size=kernel, strides=stride, padding='SAME')
        return network

def Global_Average_Pooling(x, stride=1):
    #It is global average pooling without tflearn
    width = np.shape(x)[1]
    height = np.shape(x)[2]
    pool_size = [width, height]
    return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride) # The stride value does not matter
    """
    return global_avg_pool(x, name='Global_avg_pooling')
    # But maybe you need to install h5py and curses or not
    """


def Batch_Normalization(x, training, scope):
    with arg_scope([batch_norm],
                   scope=scope,
                   updates_collections=None,
                   decay=0.9,
                   center=True,
                   scale=True,
                   zero_debias_moving_mean=True) :
        return tf.cond(training,
                       lambda : batch_norm(inputs=x, is_training=training, reuse=None),
                       lambda : batch_norm(inputs=x, is_training=training, reuse=True))

def Drop_out(x, rate, training) :
    return tf.layers.dropout(inputs=x, rate=rate, training=training)

def Relu(x):
    return tf.nn.relu(x)

def Average_pooling(x, pool_size=[2,2], stride=2, padding='VALID'):
    return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride, padding=padding)


def Max_Pooling(x, pool_size=[3,3], stride=2, padding='VALID'):
    return tf.layers.max_pooling2d(inputs=x, pool_size=pool_size, strides=stride, padding=padding)

def Concatenation(layers) :
    return tf.concat(layers, axis=3)

def Linear(x) :
    return tf.layers.dense(inputs=x, units=class_num, name='linear')



class DenseNet():
    def __init__(self, x, nb_blocks, filters, training):
        self.nb_blocks = nb_blocks
        self.filters = filters
        self.training = training
        self.model = self.Dense_net(x)


    def bottleneck_layer(self, x, scope):
        # print(x)
        with tf.name_scope(scope):
            x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
            x = Relu(x)
            x = conv_layer(x, filter=4 * self.filters, kernel=[1,1], layer_name=scope+'_conv1')
            x = Drop_out(x, rate=dropout_rate, training=self.training)

            x = Batch_Normalization(x, training=self.training, scope=scope+'_batch2')
            x = Relu(x)
            x = conv_layer(x, filter=self.filters, kernel=[3,3], layer_name=scope+'_conv2')
            x = Drop_out(x, rate=dropout_rate, training=self.training)

            # print(x)

            return x

    def transition_layer(self, x, scope):
        with tf.name_scope(scope):
            x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
            x = Relu(x)
            x = conv_layer(x, filter=self.filters, kernel=[1,1], layer_name=scope+'_conv1')
            x = Drop_out(x, rate=dropout_rate, training=self.training)
            x = Average_pooling(x, pool_size=[2,2], stride=2)

            return x

    def dense_block(self, input_x, nb_layers, layer_name):
        with tf.name_scope(layer_name):
            layers_concat = list()
            layers_concat.append(input_x)

            x = self.bottleneck_layer(input_x, scope=layer_name + '_bottleN_' + str(0))

            layers_concat.append(x)

            for i in range(nb_layers - 1):
                x = Concatenation(layers_concat)
                x = self.bottleneck_layer(x, scope=layer_name + '_bottleN_' + str(i + 1))
                layers_concat.append(x)

            x = Concatenation(layers_concat)

            return x

    def Dense_net(self, input_x):
        x = conv_layer(input_x, filter=2 * self.filters, kernel=[7,7], stride=2, layer_name='conv0')
        x = Max_Pooling(x, pool_size=[3,3], stride=2)



        for i in range(self.nb_blocks) :
            # 6 -> 12 -> 48
            x = self.dense_block(input_x=x, nb_layers=4, layer_name='dense_'+str(i))
            x = self.transition_layer(x, scope='trans_'+str(i))


        """
        x = self.dense_block(input_x=x, nb_layers=6, layer_name='dense_1')
        x = self.transition_layer(x, scope='trans_1')

        x = self.dense_block(input_x=x, nb_layers=12, layer_name='dense_2')
        x = self.transition_layer(x, scope='trans_2')

        x = self.dense_block(input_x=x, nb_layers=48, layer_name='dense_3')
        x = self.transition_layer(x, scope='trans_3')
        """

        x = self.dense_block(input_x=x, nb_layers=32, layer_name='dense_final')

        # 100 Layer
        x = Batch_Normalization(x, training=self.training, scope='linear_batch')
        x = Relu(x)
        x = Global_Average_Pooling(x)
        x = flatten(x)
        x = Linear(x)


        # x = tf.reshape(x, [-1, 10])
        return x

  
def build_graph(top_k):
    # with tf.device('/cpu:0'):
    # keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob')
    images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1], name='image_batch')
    # label = tf.placeholder(tf.float32, shape=[None, 10])
    labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch')
    training_flag = tf.placeholder(tf.bool)
    logits = DenseNet(x=images, nb_blocks=nb_block, filters=growth_k, training=training_flag).model
    loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
    # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits))

    """
    l2_loss = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()])
    optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=nesterov_momentum, use_nesterov=True)
    train = optimizer.minimize(cost + l2_loss * weight_decay)
    In paper, use MomentumOptimizer
    init_learning_rate = 0.1
    but, I'll use AdamOptimizer
    """

    global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)
    rate = tf.train.exponential_decay(2e-4, global_step, decay_steps=2000, decay_rate=0.97, staircase=True)
    optimizer = tf.train.AdamOptimizer(learning_rate=rate, epsilon=epsilon)
    train_op = optimizer.minimize(loss, global_step=global_step)

    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32))

    probabilities = logits
    tf.summary.scalar('loss', loss)
    tf.summary.scalar('accuracy', accuracy)
    merged_summary_op = tf.summary.merge_all()
    predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k=top_k)
    accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32))

    return {'images': images,
            'labels': labels,
            'training_flag': training_flag,
            'top_k': top_k,
            'global_step': global_step,
            'train_op': train_op,
            'loss': loss,
            'accuracy': accuracy,
            'accuracy_top_k': accuracy_in_top_k,
            'merged_summary_op': merged_summary_op,
            'predicted_distribution': probabilities,
            'predicted_index_top_k': predicted_index_top_k,
            'predicted_val_top_k': predicted_val_top_k} 

logger = logging.getLogger('Training a chinese write char recognition')
logger.setLevel(logging.INFO)
# formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
logger.addHandler(ch)
 
run_mode = "train"
charset_size = class_num
max_steps = 122002
save_steps = 1000
cur_test_acc = 0
  
"""
# for online 3755 words training
checkpoint_dir = '/aiml/dfs/checkpoint_888/'
train_data_dir = '/aiml/data/train/'
test_data_dir = '/aiml/data/test/'
log_dir = '/aiml/dfs/'
"""
 
 
checkpoint_dir = './checkpoint_densenet/'
train_data_dir = './data/train/'
test_data_dir = './data/test/'
log_dir = './'
 
 
tf.app.flags.DEFINE_string('mode', run_mode, 'Running mode. One of {"train", "valid", "test"}')
tf.app.flags.DEFINE_boolean('random_flip_up_down', True, "Whether to random flip up down")
tf.app.flags.DEFINE_boolean('random_brightness', True, "whether to adjust brightness")
tf.app.flags.DEFINE_boolean('random_contrast', True, "whether to random constrast")
  
tf.app.flags.DEFINE_integer('charset_size', charset_size, "Choose the first `charset_size` character to conduct our experiment.")
tf.app.flags.DEFINE_integer('image_size', 64, "Needs to provide same value as in training.")
tf.app.flags.DEFINE_boolean('gray', True, "whether to change the rbg to gray")
tf.app.flags.DEFINE_integer('max_steps', max_steps, 'the max training steps ')
tf.app.flags.DEFINE_integer('eval_steps', 50, "the step num to eval")
tf.app.flags.DEFINE_integer('save_steps', save_steps, "the steps to save")
  
tf.app.flags.DEFINE_string('checkpoint_dir', checkpoint_dir, 'the checkpoint dir')
tf.app.flags.DEFINE_string('train_data_dir', train_data_dir, 'the train dataset dir')
tf.app.flags.DEFINE_string('test_data_dir', test_data_dir, 'the test dataset dir')
tf.app.flags.DEFINE_string('log_dir', log_dir, 'the logging dir')
  
##############################
# resume training
tf.app.flags.DEFINE_boolean('restore', True, 'whether to restore from checkpoint')
##############################
 
tf.app.flags.DEFINE_boolean('epoch', 10, 'Number of epoches')
tf.app.flags.DEFINE_boolean('batch_size', 128, 'Validation batch size')
FLAGS = tf.app.flags.FLAGS
  
  
class DataIterator:
    def __init__(self, data_dir):
        # Set FLAGS.charset_size to a small value if available computation power is limited.
        truncate_path = data_dir + ('%05d' % FLAGS.charset_size)
        print(truncate_path)
        self.image_names = []
        for root, sub_folder, file_list in os.walk(data_dir):
            if root < truncate_path:
                self.image_names += [os.path.join(root, file_path) for file_path in file_list]
        random.shuffle(self.image_names)
        self.labels = [int(file_name[len(data_dir):].split(os.sep)[0]) for file_name in self.image_names]
  
    @property
    def size(self):
        return len(self.labels)
  
    @staticmethod
    def data_augmentation(images):
        if FLAGS.random_flip_up_down:
            # images = tf.image.random_flip_up_down(images)
            images = tf.contrib.image.rotate(images, random.randint(0, 15) * math.pi / 180, interpolation='BILINEAR')
        if FLAGS.random_brightness:
            images = tf.image.random_brightness(images, max_delta=0.3)
        if FLAGS.random_contrast:
            images = tf.image.random_contrast(images, 0.8, 1.2)
        return images
  
    def input_pipeline(self, batch_size, num_epochs=None, aug=False):
        images_tensor = tf.convert_to_tensor(self.image_names, dtype=tf.string)
        labels_tensor = tf.convert_to_tensor(self.labels, dtype=tf.int64)
        input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs=num_epochs)
  
        labels = input_queue[1]
        images_content = tf.read_file(input_queue[0])
        images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels=1), tf.float32)
        if aug:
            images = self.data_augmentation(images)
        new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype=tf.int32)
        images = tf.image.resize_images(images, new_size)
        image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=50000,
                                                          min_after_dequeue=10000)
        return image_batch, label_batch
  
  
def train():
    print('Begin training')
    train_feeder = DataIterator(FLAGS.train_data_dir)
    test_feeder = DataIterator(FLAGS.test_data_dir)
    with tf.Session() as sess:
        train_images, train_labels = train_feeder.input_pipeline(batch_size=FLAGS.batch_size, aug=True)
        test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size)
        graph = build_graph(top_k=1)
        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        saver = tf.train.Saver()
  
        train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
        test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/val')
        start_step = 0
        if FLAGS.restore:
            ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
            if ckpt:
                saver.restore(sess, ckpt)
                print("restore from the checkpoint {0}".format(ckpt))
                start_step += int(ckpt.split('-')[-1])
  
        logger.info(':::Training Start:::')
        try:
            while not coord.should_stop():
                start_time = time.time()
                train_images_batch, train_labels_batch = sess.run([train_images, train_labels])
                feed_dict = {graph['images']: train_images_batch,
                             graph['labels']: train_labels_batch,
                             graph['training_flag']: True}
                _, loss_val, train_summary, step = sess.run(
                    [graph['train_op'], graph['loss'], graph['merged_summary_op'], graph['global_step']],
                    feed_dict=feed_dict)
                train_writer.add_summary(train_summary, step)
                end_time = time.time()
                logger.info("the step {0} takes {1} loss {2}".format(step, end_time - start_time, loss_val))
                if step > FLAGS.max_steps:
                    break
                accuracy_test = 0
                if step % FLAGS.eval_steps == 1:
                    test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
                    feed_dict = {graph['images']: test_images_batch,
                                 graph['labels']: test_labels_batch,
                                 graph['training_flag']: False}
                    accuracy_test, test_summary = sess.run(
                        [graph['accuracy'], graph['merged_summary_op']],
                        feed_dict=feed_dict)
                    test_writer.add_summary(test_summary, step)
                    logger.info('===============Eval a batch=======================')
                    logger.info('the step {0} test accuracy: {1}'
                                .format(step, accuracy_test))
                    logger.info('===============Eval a batch=======================')
                if step % FLAGS.save_steps == 1: 
                    logger.info('Save the ckpt of {0}'.format(step))
                    saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'),
                               global_step=graph['global_step'])
                global cur_test_acc
                cur_test_acc = accuracy_test
        except tf.errors.OutOfRangeError:
            logger.info('==================Train Finished================')
            saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'), global_step=graph['global_step'])
        finally:
            coord.request_stop()
        coord.join(threads)
  
  
def validation():
    print('validation')
    test_feeder = DataIterator(FLAGS.test_data_dir)
  
    final_predict_val = []
    final_predict_index = []
    groundtruth = []
  
    with tf.Session() as sess:
        test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size, num_epochs=1)
        graph = build_graph(top_k=3)
  
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())  # initialize test_feeder's inside state
  
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
  
        saver = tf.train.Saver()
        ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
        if ckpt:
            saver.restore(sess, ckpt)
            print("restore from the checkpoint {0}".format(ckpt))
  
        print(':::Start validation:::')
        try:
            i = 0
            acc_top_1, acc_top_k = 0.0, 0.0
            while not coord.should_stop():
                i += 1
                start_time = time.time()
                test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
                feed_dict = {graph['images']: test_images_batch,
                             graph['labels']: test_labels_batch,
                             graph['training_flag']: False}
                batch_labels, probs, indices, acc_1, acc_k = sess.run([graph['labels'],
                                                                       graph['predicted_val_top_k'],
                                                                       graph['predicted_index_top_k'],
                                                                       graph['accuracy'],
                                                                       graph['accuracy_top_k']], feed_dict=feed_dict)
                final_predict_val += probs.tolist()
                final_predict_index += indices.tolist()
                groundtruth += batch_labels.tolist()
                acc_top_1 += acc_1
                acc_top_k += acc_k
                end_time = time.time()
                logger.info("the batch {0} takes {1} seconds, accuracy = {2}(top_1) {3}(top_k)"
                            .format(i, end_time - start_time, acc_1, acc_k))
  
        except tf.errors.OutOfRangeError:
            logger.info('==================Validation Finished================')
            acc_top_1 = acc_top_1 * FLAGS.batch_size / test_feeder.size
            acc_top_k = acc_top_k * FLAGS.batch_size / test_feeder.size
            logger.info('top 1 accuracy {0} top k accuracy {1}'.format(acc_top_1, acc_top_k))
        finally:
            coord.request_stop()
        coord.join(threads)
    return {'prob': final_predict_val, 'indices': final_predict_index, 'groundtruth': groundtruth}
  
  
def inference(image):
    print('inference')
    temp_image = Image.open(image).convert('L')
    temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS)
    temp_image = np.asarray(temp_image) / 255.0
    temp_image = temp_image.reshape([-1, 64, 64, 1])
    with tf.Session() as sess:
        logger.info('========start inference============')
        # images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1])
        # Pass a shadow label 0. This label will not affect the computation graph.
        graph = build_graph(top_k=3)
        saver = tf.train.Saver()
        ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
        if ckpt:
            saver.restore(sess, ckpt)
        predict_val, predict_index = sess.run([graph['predicted_val_top_k'], graph['predicted_index_top_k']],
                                              feed_dict={graph['images']: temp_image, graph['training_flag']: False})
    return predict_val, predict_index
  
  
def main(_):
    print(FLAGS.mode)
    if FLAGS.mode == "train":
        train()
    elif FLAGS.mode == 'validation':
        dct = validation()
        result_file = 'result.dict'
        logger.info('Write result into {0}'.format(result_file))
        with open(result_file, 'wb') as f:
            pickle.dump(dct, f)
        logger.info('Write file ends')
    elif FLAGS.mode == 'inference':
        image_path = './data/00098/102544.png'
        final_predict_val, final_predict_index = inference(image_path)
        logger.info('the result info label {0} predict index {1} predict_val {2}'.format(190, final_predict_index,
                                                                                         final_predict_val))
  
if __name__ == "__main__":
    tf.app.run()

 

densenet模型参考:https://github.com/taki0112/Densenet-Tensorflow

 

效果:

===============Eval a batch=======================
the step 34001.0 test accuracy: 0.765625
===============Eval a batch=======================

 

 

Compare Structure (CNN, ResNet, DenseNet)

标签:self,batch,汉字手写,test,train,tf,tensorflow,densenet,size
From: https://blog.51cto.com/u_11908275/6386019

相关文章

  • Could not find the DLL(s) 'msvcp140_1.dll'. TensorFlow requires that these DLLs
      python-c"fromtransformersimportpipeline;print(pipeline('sentiment-analysis')('weloveyou'))"MicrosoftVisualC++Redistributableisnotinstalled,thismayleadtotheDLLloadfailure.                Itcanbedow......
  • (三)linux同时安装pytorch和tensorflow1.14,忽略错误
    一、命令catrequirements.txt|xargs-n1pipinstall环境python3.7二、requirements.txtabsl-py==1.4.0astor==0.8.1autograd==1.5backcall==0.2.0Bottleneck==1.3.5certifi==2022.12.7chainer==7.8.1charset-normalizer==3.1.0click==8.1.3colorama==0.4.6......
  • tensorflow knn mnist
     #MNISTDigitPredictionwithk-NearestNeighbors#-----------------------------------------------##ThisscriptwillloadtheMNISTdata,andsplit#itintotest/trainandperformpredictionwith#nearestneighbors##Foreachtestinteger,wewill......
  • 【2023 · CANN训练营第一季】昇腾AI入门课(TensorFlow)之模型迁移
    昇腾AI入门课(TensorFlow)之模型迁移将TensorFlow网络模型迁移到异腾Al处理器执行训练,主要有两种方式:自动迁移方式。通过迁移工具对原始脚本进行AST语法树扫描,可自动分析原生的TensorFlowAPI在异腾AI处理器上的支持度,并将原始的TensorFlowi训练脚本迁移成异腾Al处理器支持的脚本,对于......
  • 【2023 · CANN训练营第一季】——在华为AI加速型ECS上安装Pytorch和Tensorflow框架
    前言:在CANN训练营提供的华为云镜像环境,通过miniconda安装pytorch和Tensorflow框架。在模型迁移前准备阶段,可以用来在CPU上对模型训练进行验证。本文描述了安装过程,更换国内conda源、并分别下载例程,在Pytorch和Tensorflow框架下进行了CPU训练。还介绍了在Pytorch、Tensorflow虚拟环......
  • 使用 TensorFlow 自动微分和神经网络功能估算线性回归的参数(Estimate parameters for
    大多数的深度学习框架至少都会具备以下功能:(1)张量运算(2)自动微分(3)神经网络及各种神经层TensorFlow框架亦是如此。在《深度学习全书公式+推导+代码+TensorFlow全程案例》——洪锦魁主编清华大学出版社ISBN978-7-302-61030-4这本书第3章《TensorFlow架构与主要功能》这一......
  • 【836】Cannot import tensorflow_text
    Ref:Cannotimporttensorflow_textSometimesyouneedtoreinstallandupdatetensorflowtheninstalltensorflow_text.(Becauseyouneedyourtensorflow.__version__andtensorflow_text.__version__tohavethesameversion)Makesuretensorflowandtensor......
  • [7]数据科学-【8】TensorFlow库
    TensorFlow是一个广泛使用的机器学习和深度学习框架,它提供了丰富的工具和库,用于构建、训练和部署各种人工智能模型。本教程将带你从头开始学习如何使用TensorFlow库进行机器学习任务。我们将依次介绍TensorFlow的基本概念、张量操作、构建模型、训练模型和保存模型的方法。1.安装T......
  • 关于同时运行多个tensorflow模型时线程创建失败
    OpenMP:"libgomp:Threadcreationfailed:Resourcetemporarilyunavailable"whencoderunasregularuser这几天在跑代码的时候,因为模型需要调参,方便起见打算同时运行25个程序。但是在使用bash脚本,同时启动25个进程的时候,发现制启动了12个进程。尝试用vscode打开调试模式,......
  • ISL学习——tensorflow部分指令
    tf.keras.layers.Sequential()#用来描述神经网络的结构,其中Sequential()里面的参数是用来描述从输入层到输出层的网络结构。modnn=tf.keras.Sequential([tf.keras.layers.Dense(units=10,#参数为正整数,表示输出空间的维数为10维......