首页 > 其他分享 >SpringBoot集成kafka全面实战

SpringBoot集成kafka全面实战

时间:2023-05-31 09:44:39浏览次数:44  
标签:实战 SpringBoot topic1 分区 kafka topic 消息 public

一、前戏
1、在项目中连接kafka,因为是外网,首先要开放kafka配置文件中的如下配置(其中IP为公网IP),

advertised.listeners=PLAINTEXT://112.126.74.249:9092

2、在开始前我们先创建两个topic:topic1、topic2,其分区和副本数都设置为2,用来测试,

[root@iZ2zegzlkedbo3e64vkbefZ ~]#  cd /usr/local/kafka-cluster/kafka1/bin/
[root@iZ2zegzlkedbo3e64vkbefZ bin]# ./kafka-topics.sh --create --zookeeper 172.17.80.219:2181 --replication-factor 2 --partitions 2 --topic topic1
Created topic topic1.
[root@iZ2zegzlkedbo3e64vkbefZ bin]# ./kafka-topics.sh --create --zookeeper 172.17.80.219:2181 --replication-factor 2 --partitions 2 --topic topic2
Created topic topic2.

当然我们也可以不手动创建topic,在执行代码kafkaTemplate.send("topic1", normalMessage)发送消息时,kafka会帮我们自动完成topic的创建工作,但这种情况下创建的topic默认只有一个分区,分区也没有副本。所以,我们可以在项目中新建一个配置类专门用来初始化topic,如下,

3、新建SpringBoot项目

① 引入pom依赖

<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>

② application.propertise配置(本文用到的配置项这里全列了出来)

###########【Kafka集群】###########
spring.kafka.bootstrap-servers=112.126.74.249:9092,112.126.74.249:9093
###########【初始化生产者配置】###########
# 重试次数
spring.kafka.producer.retries=0
# 应答级别:多少个分区副本备份完成时向生产者发送ack确认(可选0、1、all/-1)
spring.kafka.producer.acks=1
# 批量大小
spring.kafka.producer.batch-size=16384
# 提交延时
spring.kafka.producer.properties.linger.ms=0
# 当生产端积累的消息达到batch-size或接收到消息linger.ms后,生产者就会将消息提交给kafka
# linger.ms为0表示每接收到一条消息就提交给kafka,这时候batch-size其实就没用了
​
# 生产端缓冲区大小
spring.kafka.producer.buffer-memory = 33554432
# Kafka提供的序列化和反序列化类
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
# 自定义分区器
# spring.kafka.producer.properties.partitioner.class=com.felix.kafka.producer.CustomizePartitioner
​
###########【初始化消费者配置】###########
# 默认的消费组ID
spring.kafka.consumer.properties.group.id=defaultConsumerGroup
# 是否自动提交offset
spring.kafka.consumer.enable-auto-commit=true
# 提交offset延时(接收到消息后多久提交offset)
spring.kafka.consumer.auto.commit.interval.ms=1000
# 当kafka中没有初始offset或offset超出范围时将自动重置offset
# earliest:重置为分区中最小的offset;
# latest:重置为分区中最新的offset(消费分区中新产生的数据);
# none:只要有一个分区不存在已提交的offset,就抛出异常;
spring.kafka.consumer.auto-offset-reset=latest
# 消费会话超时时间(超过这个时间consumer没有发送心跳,就会触发rebalance操作)
spring.kafka.consumer.properties.session.timeout.ms=120000
# 消费请求超时时间
spring.kafka.consumer.properties.request.timeout.ms=180000
# Kafka提供的序列化和反序列化类
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
# 消费端监听的topic不存在时,项目启动会报错(关掉)
spring.kafka.listener.missing-topics-fatal=false
# 设置批量消费
# spring.kafka.listener.type=batch
# 批量消费每次最多消费多少条消息
# spring.kafka.consumer.max-poll-records=50

③添加配置类

@Configuration
public class KafkaInitialConfiguration {
    // 创建一个名为testtopic的Topic并设置分区数为8,分区副本数为2
    @Bean
    public NewTopic initialTopic() {
        return new NewTopic("topic1",8, (short) 2 );
    }
​
     // 如果要修改分区数,只需修改配置值重启项目即可
    // 修改分区数并不会导致数据的丢失,但是分区数只能增大不能减小
    @Bean
    public NewTopic updateTopic() {
        return new NewTopic("topic1",10, (short) 2 );
    }
}

二、Hello Kafka

1、简单生产者

@RestController
public class KafkaProducer {
    @Autowired
    private KafkaTemplate<String, Object> kafkaTemplate;
​
    // 发送消息
    @GetMapping("/kafka/normal/{message}")
    public void sendMessage1(@PathVariable("message") String normalMessage) {
        kafkaTemplate.send("topic1", normalMessage);
    }
}

2、简单消费

@Component
public class KafkaConsumer {
    // 消费监听
    @KafkaListener(topics = {"topic1"})
    public void onMessage1(ConsumerRecord<?, ?> record){
        // 消费的哪个topic、partition的消息,打印出消息内容
        System.out.println("简单消费:"+record.topic()+"-"+record.partition()+"-"+record.value());
    }
}

上面示例创建了一个生产者,发送消息到topic1,消费者监听topic1消费消息。监听器用@KafkaListener注解,topics表示监听的topic,支持同时监听多个,用英文逗号分隔。启动项目,postman调接口触发生产者发送消息,

 可以看到监听器消费成功,

 

三、生产者

1、带回调的生产者

kafkaTemplate提供了一个回调方法addCallback,我们可以在回调方法中监控消息是否发送成功 或 失败时做补偿处理,有两种写法,

@GetMapping("/kafka/callbackOne/{message}")
public void sendMessage2(@PathVariable("message") String callbackMessage) {
    kafkaTemplate.send("topic1", callbackMessage).addCallback(success -> {
        // 消息发送到的topic
        String topic = success.getRecordMetadata().topic();
        // 消息发送到的分区
        int partition = success.getRecordMetadata().partition();
        // 消息在分区内的offset
        long offset = success.getRecordMetadata().offset();
        System.out.println("发送消息成功:" + topic + "-" + partition + "-" + offset);
    }, failure -> {
        System.out.println("发送消息失败:" + failure.getMessage());
    });
}
@GetMapping("/kafka/callbackTwo/{message}")
public void sendMessage3(@PathVariable("message") String callbackMessage) {
    kafkaTemplate.send("topic1", callbackMessage).addCallback(new ListenableFutureCallback<SendResult<String, Object>>() {
        @Override
        public void onFailure(Throwable ex) {
            System.out.println("发送消息失败:"+ex.getMessage());
        }
 
        @Override
        public void onSuccess(SendResult<String, Object> result) {
            System.out.println("发送消息成功:" + result.getRecordMetadata().topic() + "-"
                    + result.getRecordMetadata().partition() + "-" + result.getRecordMetadata().offset());
        }
    });
}

2、自定义分区器

我们知道,kafka中每个topic被划分为多个分区,那么生产者将消息发送到topic时,具体追加到哪个分区呢?这就是所谓的分区策略,Kafka 为我们提供了默认的分区策略,同时它也支持自定义分区策略。其路由机制为:

① 若发送消息时指定了分区(即自定义分区策略),则直接将消息append到指定分区;

② 若发送消息时未指定 patition,但指定了 key(kafka允许为每条消息设置一个key),则对key值进行hash计算,根据计算结果路由到指定分区,这种情况下可以保证同一个 Key 的所有消息都进入到相同的分区;

③ patition 和 key 都未指定,则使用kafka默认的分区策略,轮询选出一个 patition;

※ 我们来自定义一个分区策略,将消息发送到我们指定的partition,首先新建一个分区器类实现Partitioner接口,重写方法,其中partition方法的返回值就表示将消息发送到几号分区,

public class CustomizePartitioner implements Partitioner {
    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        // 自定义分区规则(这里假设全部发到0号分区)
        // ......
        return 0;
    }
​
    @Override
    public void close() {
​
    }
​
    @Override
    public void configure(Map<String, ?> configs) {
​
    }
}

在application.propertise中配置自定义分区器,配置的值就是分区器类的全路径名,

# 自定义分区器
spring.kafka.producer.properties.partitioner.class=com.felix.kafka.producer.CustomizePartitioner

3、kafka事务提交

如果在发送消息时需要创建事务,可以使用 KafkaTemplate 的 executeInTransaction 方法来声明事务,

@GetMapping("/kafka/transaction")
public void sendMessage7(){
    // 声明事务:后面报错消息不会发出去
    kafkaTemplate.executeInTransaction(operations -> {
        operations.send("topic1","test executeInTransaction");
        throw new RuntimeException("fail");
    });
​
    // 不声明事务:后面报错但前面消息已经发送成功了
   kafkaTemplate.send("topic1","test executeInTransaction");
   throw new RuntimeException("fail");
}

四、消费者
1、指定topic、partition、offset消费

前面我们在监听消费topic1的时候,监听的是topic1上所有的消息,如果我们想指定topic、指定partition、指定offset来消费呢?也很简单,@KafkaListener注解已全部为我们提供,

/**
 * @Title 指定topic、partition、offset消费
 * @Description 同时监听topic1和topic2,监听topic1的0号分区、topic2的 "0号和1号" 分区,指向1号分区的offset初始值为8
 * @Author long.yuan
 * @Date 2020/3/22 13:38
 * @Param [record]
 * @return void
 **/
@KafkaListener(id = "consumer1",groupId = "felix-group",topicPartitions = {
        @TopicPartition(topic = "topic1", partitions = { "0" }),
        @TopicPartition(topic = "topic2", partitions = "0", partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "8"))
})
public void onMessage2(ConsumerRecord<?, ?> record) {
    System.out.println("topic:"+record.topic()+"|partition:"+record.partition()+"|offset:"+record.offset()+"|value:"+record.value());
}

属性解释:

① id:消费者ID;

② groupId:消费组ID;

③ topics:监听的topic,可监听多个;

④ topicPartitions:可配置更加详细的监听信息,可指定topic、parition、offset监听。

上面onMessage2监听的含义:监听topic1的0号分区,同时监听topic2的0号分区和topic2的1号分区里面offset从8开始的消息。

注意:topics和topicPartitions不能同时使用;

2、批量消费

设置application.prpertise开启批量消费即可,

# 设置批量消费
spring.kafka.listener.type=batch
# 批量消费每次最多消费多少条消息
spring.kafka.consumer.max-poll-records=50

接收消息时用List来接收,监听代码如下,

@KafkaListener(id = "consumer2",groupId = "felix-group", topics = "topic1")
public void onMessage3(List<ConsumerRecord<?, ?>> records) {
    System.out.println(">>>批量消费一次,records.size()="+records.size());
    for (ConsumerRecord<?, ?> record : records) {
        System.out.println(record.value());
    }
}

3、ConsumerAwareListenerErrorHandler 异常处理器

通过异常处理器,我们可以处理consumer在消费时发生的异常。

新建一个 ConsumerAwareListenerErrorHandler 类型的异常处理方法,用@Bean注入,BeanName默认就是方法名,然后我们将这个异常处理器的BeanName放到@KafkaListener注解的errorHandler属性里面,当监听抛出异常的时候,则会自动调用异常处理器,

// 新建一个异常处理器,用@Bean注入
@Bean
public ConsumerAwareListenerErrorHandler consumerAwareErrorHandler() {
    return (message, exception, consumer) -> {
        System.out.println("消费异常:"+message.getPayload());
        return null;
    };
}
​
// 将这个异常处理器的BeanName放到@KafkaListener注解的errorHandler属性里面
@KafkaListener(topics = {"topic1"},errorHandler = "consumerAwareErrorHandler")
public void onMessage4(ConsumerRecord<?, ?> record) throws Exception {
    throw new Exception("简单消费-模拟异常");
}
​
// 批量消费也一样,异常处理器的message.getPayload()也可以拿到各条消息的信息
@KafkaListener(topics = "topic1",errorHandler="consumerAwareErrorHandler")
public void onMessage5(List<ConsumerRecord<?, ?>> records) throws Exception {
    System.out.println("批量消费一次...");
    throw new Exception("批量消费-模拟异常");
}

执行看一下效果,

 

4、消息过滤器

消息过滤器可以在消息抵达consumer之前被拦截,在实际应用中,我们可以根据自己的业务逻辑,筛选出需要的信息再交由KafkaListener处理,不需要的消息则过滤掉。

配置消息过滤只需要为 监听器工厂 配置一个RecordFilterStrategy(消息过滤策略),返回true的时候消息将会被抛弃,返回false时,消息能正常抵达监听容器。

@Component
public class KafkaConsumer {
    @Autowired
    ConsumerFactory consumerFactory;
​
    // 消息过滤器
    @Bean
    public ConcurrentKafkaListenerContainerFactory filterContainerFactory() {
        ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory();
        factory.setConsumerFactory(consumerFactory);
        // 被过滤的消息将被丢弃
        factory.setAckDiscarded(true);
        // 消息过滤策略
        factory.setRecordFilterStrategy(consumerRecord -> {
            if (Integer.parseInt(consumerRecord.value().toString()) % 2 == 0) {
                return false;
            }
            //返回true消息则被过滤
            return true;
        });
        return factory;
    }
​
    // 消息过滤监听
    @KafkaListener(topics = {"topic1"},containerFactory = "filterContainerFactory")
    public void onMessage6(ConsumerRecord<?, ?> record) {
        System.out.println(record.value());
    }
}

上面实现了一个"过滤奇数、接收偶数"的过滤策略,我们向topic1发送0-99总共100条消息,看一下监听器的消费情况,可以看到监听器只消费了偶数,

 

5、消息转发

在实际开发中,我们可能有这样的需求,应用A从TopicA获取到消息,经过处理后转发到TopicB,再由应用B监听处理消息,即一个应用处理完成后将该消息转发至其他应用,完成消息的转发。

在SpringBoot集成Kafka实现消息的转发也很简单,只需要通过一个@SendTo注解,被注解方法的return值即转发的消息内容,如下,

/**
 * @Title 消息转发
 * @Description 从topic1接收到的消息经过处理后转发到topic2
 * @Author long.yuan
 * @Date 2020/3/23 22:15
 * @Param [record]
 * @return void
 **/
@KafkaListener(topics = {"topic1"})
@SendTo("topic2")
public String onMessage7(ConsumerRecord<?, ?> record) {
    return record.value()+"-forward message";
}

6、定时启动、停止监听器

默认情况下,当消费者项目启动的时候,监听器就开始工作,监听消费发送到指定topic的消息,那如果我们不想让监听器立即工作,想让它在我们指定的时间点开始工作,或者在我们指定的时间点停止工作,该怎么处理呢——使用KafkaListenerEndpointRegistry,下面我们就来实现:

① 禁止监听器自启动;

② 创建两个定时任务,一个用来在指定时间点启动定时器,另一个在指定时间点停止定时器;

新建一个定时任务类,用注解@EnableScheduling声明,KafkaListenerEndpointRegistry 在SpringIO中已经被注册为Bean,直接注入,设置禁止KafkaListener自启动,

@EnableScheduling
@Component
public class CronTimer {
​
    /**
     * @KafkaListener注解所标注的方法并不会在IOC容器中被注册为Bean,
     * 而是会被注册在KafkaListenerEndpointRegistry中,
     * 而KafkaListenerEndpointRegistry在SpringIOC中已经被注册为Bean
     **/
    @Autowired
    private KafkaListenerEndpointRegistry registry;
​
    @Autowired
    private ConsumerFactory consumerFactory;
​
    // 监听器容器工厂(设置禁止KafkaListener自启动)
    @Bean
    public ConcurrentKafkaListenerContainerFactory delayContainerFactory() {
        ConcurrentKafkaListenerContainerFactory container = new ConcurrentKafkaListenerContainerFactory();
        container.setConsumerFactory(consumerFactory);
        //禁止KafkaListener自启动
        container.setAutoStartup(false);
        return container;
    }
​
    // 监听器
    @KafkaListener(id="timingConsumer",topics = "topic1",containerFactory = "delayContainerFactory")
    public void onMessage1(ConsumerRecord<?, ?> record){
        System.out.println("消费成功:"+record.topic()+"-"+record.partition()+"-"+record.value());
    }
​
    // 定时启动监听器
    @Scheduled(cron = "0 42 11 * * ? ")
    public void startListener() {
        System.out.println("启动监听器...");
        // "timingConsumer"是@KafkaListener注解后面设置的监听器ID,标识这个监听器
        if (!registry.getListenerContainer("timingConsumer").isRunning()) {
            registry.getListenerContainer("timingConsumer").start();
        }
        //registry.getListenerContainer("timingConsumer").resume();
    }
​
    // 定时停止监听器
    @Scheduled(cron = "0 45 11 * * ? ")
    public void shutDownListener() {
        System.out.println("关闭监听器...");
        registry.getListenerContainer("timingConsumer").pause();
    }
}

启动项目,触发生产者向topic1发送消息,可以看到consumer没有消费,因为这时监听器还没有开始工作,

 

11:42分监听器启动开始工作,消费消息,

 

 

11:45分监听器停止工作,

 

————————————————
原文链接:https://blog.csdn.net/weixin_70730532/article/details/125425798

标签:实战,SpringBoot,topic1,分区,kafka,topic,消息,public
From: https://www.cnblogs.com/shenyixin/p/17445164.html

相关文章

  • kafka消费端可以用预提交的方式进行精确消费
      为了避免重复消费:在服务器的数据库端记录一个状态,这个状态标志着这条消息被正确消费了。如果在向kafka提交commit之前服务器崩掉了,再次启动时服务器读取这个状态,如果是这个消息被正确消费过的,就把指针指向下一条数据。 ......
  • kafka的leader,follow,offset
     1.partition分为主从。2.当需要严格顺序时(比如秒杀场景),每个topic里面只能有一个partition,这样可以严格保证顺序。虽然多个partition时也可以保证partition内部是顺序执行的,但是不能保证整体是顺序执行的。3.同一个partition只能由一个消费者。就像一个椅子里只能坐一个人,咋......
  • 基于JAVA的springboot+vue学生综合测评系统,附源码+数据库+论文+PPT
    1、项目介绍本学生综合测评系统以springboot作为框架,b/s模式以及MySql作为后台运行的数据库,同时使用Tomcat用为系统的服务器。本系统主要包括首页,个人中心,学生管理,试题信息管理,测评试题管理,管理员管理,综合测评管理,系统管理,综合考试管理等功能,通过这些功能的实现基本能够满足日常......
  • Pytorch多分类问题实战
    多分类问题实战定义一个简单的神经网络模型,并使用SGD优化算法进行训练和测试MNIST数据集importtorchimporttorch.nn.functionalasFimporttorch.optimasoptim"""torchvision可以帮助简化计算机视觉任务的实现,包括图像分类、目标检测、语义分割等。它提供了一些预训......
  • Pytorch高级api搭建多层感知机实战
    Pytorch高级api搭建多层感知机实战代码importtorchimporttorch.nn.functionalasFimporttorch.optimasoptimfromtorchvisionimportdatasets,transformsbatch_size=200learning_rate=0.01epochs=10train_loader=torch.utils.data.DataLoader(da......
  • dp-runtime去Kafka依赖方案
    背景现有原生kafkaconnectruntime,在客户环境运行遇到诸多问题,问题列表如下:强依赖Kafka集群做任务分配、connector配置信息、connector状态管理、source进度维护等等当遇到数据量大、并行数多,topic数量较多时,可能引发kakfa集群的不稳定包括(节点宕机,controller切换等)从而引......
  • springboot启动源码
    每个SpringBoot项目都有一个主程序启动类,在主程序启动类中有一个启动项目的main()方法,在该方法中通过执行SpringApplication.run()即可启动整个SpringBoot程序。问题:那么SpringApplication.run()方法到底是如何做到启动SpringBoot项目的呢?下面我们查看run()方法内部的源码,核......
  • 去kafka依赖runtime版本梳理
    背景xxx数据同步产品,在客户环境长期运行过程中,发现runtime主要存在以下问题•当前架构下,worker集群管理依赖kafka,kafka同时承担任务分配协调和数据缓冲二项职责,当Kafka作为数据缓存不稳定,这二项工作相互干扰导致worker集群不稳定解决方案•为了解决上述的问题,需要重构现有的......
  • 分页 springboot
    maven<!--https://mvnrepository.com/artifact/com.github.pagehelper/pagehelper-spring-boot-starter--><dependency><groupId>com.github.pagehelper</groupId><artifactId>pagehelper-spri......
  • Netty实战(八)
    (引导)一、引导1.1什么是引导引导一个应用程序是指对它进行配置,并使它运行起来的过程。引导可以简单的认为是将分散的了ChannelPipeline、ChannelHandler和EventLoop组合起来,成为一个完成应用程序的模块。1.2Bootstrap类引导类的层次结构包括一个抽象的父类和两个具体......