Given an unsorted array of integers, find the length of longest continuous
increasing subsequence (subarray).
Example 1:
Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3.
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4.
Example 2:
Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1.
Note: Length of the array will not exceed 10,000.
class Solution(object):
def findLengthOfLCIS(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums: return 0
ans = 1
cnt = 1
for i in xrange(1, len(nums)):
if nums[i] > nums[i-1]:
cnt += 1
ans = max(ans, cnt)
else:
cnt = 1
return ans
本质上还是计数器!发现没有递增就reset计数器。
或者是用贪心也可以:
class Solution(object):
def findLengthOfLCIS(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
ans = 0
i = 0
while i < len(nums):
cnt = 1
while i+1<len(nums) and nums[i+1]>nums[i]:
i += 1
cnt += 1
ans = max(ans, cnt)
i += 1
return ans
还有dp解法,虽然看起来不是那么舒服:
class Solution {
public int findLengthOfLCIS(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length;
int[] dp = new int[n];
int max = 1;
dp[0] = 1;
for (int i = 1; i < n; i++) {
if (nums[i] > nums[i - 1]) {
dp[i] = dp[i - 1] + 1;
}
else {
dp[i] = 1;
}
max = Math.max(max, dp[i]);
}
return max;
}
}
标签:cnt,nums,674,max,Continuous,int,Subsequence,ans,dp
From: https://blog.51cto.com/u_11908275/6380983