首页 > 其他分享 >Uncovering the Representation of Spiking Neural Networks Trained with Surrogate Gradient

Uncovering the Representation of Spiking Neural Networks Trained with Surrogate Gradient

时间:2023-05-28 11:34:11浏览次数:61  
标签:Surrogate Uncovering Neural Gradient Trained Representation

郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!

 Published in Transactions on Machine Learning Research (04/2023)

标签:Surrogate,Uncovering,Neural,Gradient,Trained,Representation
From: https://www.cnblogs.com/lucifer1997/p/17437974.html

相关文章

  • Paper Reading: Adaptive Neural Trees
    目录研究动机文章贡献自适应神经树模型拓扑与操作概率模型与推理优化实验结果模型性能消融实验可解释性细化阶段的影响自适应模型复杂度优点和创新点PaperReading是从个人角度进行的一些总结分享,受到个人关注点的侧重和实力所限,可能有理解不到位的地方。具体的细节还需要以原文......
  • Basics of Neural Network Programming
    目录BasicsofNeuralNetworkProgrammingLogisticRegressionBasicsofNeuralNetworkProgrammingLogisticRegressiongivenx,want\(\hat{y}=P(y=1|x)\),\(x\in\R^{n_x}\)\(\hat{y_1}=w_{11}*x_{11}+w_{12}*x_{12}+\dots+w_{1n_x}*x_{1n_x}+b_1\).P......
  • Paper Reading: forgeNet a graph deep neural network model using tree-based ensem
    目录研究动机文章贡献本文方法图嵌入深度前馈网络forgeNet特征重要性评估具体实现模拟实验合成数据生成实验评估实验结果真实数据应用BRCA数据集microRNA数据Healthyhumanmetabolomics数据集优点和创新点PaperReading是从个人角度进行的一些总结分享,受到个人关注点的侧重......
  • Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
    目录概符号说明C&S代码HuangQ.,HeH.,SinghA.,LimS.andBensonA.R.Combininglabelpropagationandsimplemodelsout-performsgraphneuralnetworks.ICLR,2021.概将预测概率作为信号进行传播.符号说明\(G=(V,E)\),图;\(|V|=n\);\(X\in\mathbb{R}......
  • 全网最详细解读《GIN-HOW POWERFUL ARE GRAPH NEURAL NETWORKS》!!!
    Abstract+IntroductionGNNs大都遵循一个递归邻居聚合的方法,经过k次迭代聚合,一个节点所表征的特征向量能够捕捉到距离其k-hop邻域的邻居节点的特征,然后还可以通过pooling获取到整个图的表征(比如将所有节点的表征向量相加后用于表示一个图表征向量)。关于邻居聚合策略以及......
  • 第四周编程作业(一)-Building your Deep Neural Network: Step by Step
    BuildingyourDeepNeuralNetwork:StepbyStepWelcometoyourweek4assignment(part1of2)!Youhavepreviouslytraineda2-layerNeuralNetwork(withasinglehiddenlayer).Thisweek,youwillbuildadeepneuralnetwork,withasmanylayersasyou......
  • VeriSilicon's Vivante® Neural Network Processor (NPU) IP
    高度可扩展、可编程的计算机视觉和人工智能处理器 芯原Vivante的神经网络处理器(NPU)IP是高度可扩展、可编程的计算机视觉和人工智能处理器,支持终端、边缘端及云端设备的人工智能运算升级。VivanteNPUIP可满足多种芯片尺寸和功耗预算,是具成本效益的优质神经网络加速引擎解决......
  • 论文解读《Interpolated Adversarial Training: Achieving robust neural networks wi
    论文信息论文标题:InterpolatedAdversarialTraining:Achievingrobustneuralnetworkswithoutsacrificingtoomuchaccuracy论文作者:AlexLambVikasVermaKenjiKawaguchiAlexanderMatyaskoSavyaKhoslaJuhoKannalaYoshuaBengio论文来源:2022NeuralNetworks论文地址:dow......
  • Handling Information Loss of Graph Neural Networks for Session-based Recommendat
    目录概符号说明存在的问题LossysessionencodingproblemIneffectivelong-rangedependencycapturingproblemLESSRS2MGS2SG模型EOPA(Edge-OrderPreservingAggregation)SGAT(ShortcutGraphAttention)叠加代码ChenT.andWongR.C.Handlinginformationlossofgrap......
  • Spatiotemporal Remote Sensing Image Fusion Using Multiscale Two-Stream Convoluti
    SpatiotemporalRemoteSensingImageFusionUsingMultiscaleTwo-StreamConvolutionalNeuralNetworksabstract地表反射率图像的渐变和突变是现有STF方法的主要挑战。(Gradualandabruptchangesinlandsurfacereflectanceimagesarethemainchallengesinexisting......