首页 > 其他分享 >最长单调递增子序列

最长单调递增子序列

时间:2023-05-25 17:02:15浏览次数:41  
标签:1024 int 递增 Len LIS 序列 长度 单调


问题:

设计一个O(n^2)时间的算法,找出由n个数组成的序列的最长单调递增子序列。

方法一:最长公共子序列,动态规划。

思路:1:将数组a复制到b;

           2:对b排序;

           3:对数组b去重(注意去重是必要的,因为要求单调递增),这里利用hash表去重。  

           4:求a, b数组的最长公共子序列。

           求最长公共子序列方法见 javascript:void(0)

 代码:

#include <bits/stdc++.h>
using namespace std;
int a[1024]; //原数组
int b[1024]; //排序后数组
int ans[1024][1024]; //记录 c[i][j] 的值是有哪个子问题得到
int c[1024][1024]; //最长子序列长度
int n; //数组长度
int m; //去重后的长度
void LCS(int i, int j)
{
    if(i == 0 || j == 0)
        return;
    else if(ans[i][j] == 1)
    {
        LCS(i - 1, j - 1);
        cout << a[i] << " ";
    }
    else if(ans[i][j] == 2)
    {
        LCS(i - 1, j);
    }
    else
    {
        LCS(i, j - 1);
    }
}
void LCSLegth()
{
    memset(ans, 0, sizeof(ans));
    memset(c, 0, sizeof(c));
    for(int i = 1; i <= n; ++i)
    {
        for(int j = 1; j <= m; ++j)
        {
            if(a[i] == b[j])
            {
                c[i][j] = c[i - 1][j - 1] + 1;
                ans[i][j] = 1;
            }
            else if(c[i - 1][j] > c[i][j - 1])
            {
                c[i][j] = c[i - 1][j];
                ans[i][j] = 2;
            }
            else
            {
                c[i][j] = c[i][j - 1];
                ans[i][j] = 3;
            }
        }
    }
}
void HashTable()
{
    int max_ = b[n];
    m = 0;
    int *p = new int(max_);
    memset(p, 0, sizeof(p));
    for(int i = 1; i <= n; ++i)
    {
        p[b[i]] = 1;
    }
    memset(b, 0, sizeof(b));
    for(int i = 0; i <= max_; ++i)
    {
        if(p[i] == 1)
            b[++m] = i;
    }
    delete []p;
    p = NULL;

}
void solve()
{
    sort(b + 1, b + n);
    HashTable(); //去重
//    for(int i = 1; i <= m; ++i)
//        cout << b[i] << " ";
//    cout << endl;
    LCSLegth();
    LCS(n, m);
}
void inPut()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i)
    {
        scanf("%d", &a[i]);
        b[i] = a[i];
    }
}
int main()
{
    inPut();
    solve();
}

方法二:动态规划

思路:F[i]的含义为:在“可取元素为前i”且“取第i个元素”时最长递增序列的长度。

          则可得递归关系为: F[i] = max(F[k]) + 1, 1 <= k <= i - 1 && a[i] > a[k]

代码:

#include <bits/stdc++.h>
using namespace std;
int a[1024]; //原数组
int F[1024]; //在i处的长度
int n; //数组长度
int max_ = 0; // 最长长度
void solve()
{
   for(int i = 1; i <= n; ++i)
    F[i] = 1;
   for(int i = 1; i <= n; ++i)
   {
       for(int j = 1; j < i; ++j)
       {
           if(a[i] > a[j] && F[i] < F[j] + 1)
            F[i] = F[j] + 1;
       }
   }
   for(int i = 1; i <= n; ++i)
    if(F[i] > max_)
        max_ = F[i];
}
void inPut()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i)
    {
        scanf("%d", &a[i]);
    }
}
int main()
{
    inPut();
    solve();
}



方法三:Nlog(N)

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
代码如下:

//在非递减序列 arr[s..e](闭区间)上二分查找第一个大于等于key的位置,如果都小于key,就返回e+1
int upper_bound(int arr[], int s, int e, int key)
{
    int mid;
    if (arr[e] <= key)
        return e + 1;
    while (s < e)
    {
        mid = s + (e - s) / 2;
        if (arr[mid] <= key)
            s = mid + 1;
        else
            e = mid;
    }
    return s;
}

int LIS(int d[], int n)
{
    int i = 0, len = 1, *end = (int *)alloca(sizeof(int) * (n + 1));
    end[1] = d[0]; //初始化:长度为1的LIS末尾为d[0]
    for (i = 1; i < n; i++)
    {
        int pos = upper_bound(end, 1, len, d[i]); //找到插入位置
        end[pos] = d[i];
        if (len < pos) //按需要更新LIS长度
            len = pos;
    }
    return len;
}



标签:1024,int,递增,Len,LIS,序列,长度,单调
From: https://blog.51cto.com/u_16129621/6350099

相关文章

  • 1004.Django项目用户功能之关联序列化及访问限流
    一、路由器1.SimpleRouter该路由器包括标准集合——list、create、retrieve、update、partial_update、destroy动作的路由。视图集中还可以使用@detail_route或@list_route装饰器标记要被路由的其他方法;2.DefaultRouter这个路由器类似于上面的SimpleRouter,但是还包括一个默......
  • Java序列化和反序列化
    序列化和反序列化的定义*Java序列化就是指把Java对象转换为字节序列的过程*Java反序列化就是指把字节序列恢复为Java对象的过程。 以下是我们常见的一行代码:privatestaticfinallongserialVersionUID=1L;关于这行代码,这是java源码中的一段话:如果可序列化类没有显......
  • 列出真分数序列
    自然语言解决问题:分子、分母只有公因数1的分数叫做最简分数或者说分子和分母是互质数的分数,叫做最简分数,又称既约分数,如2/3,8/9,3/8等。方法一:求分子小于40的最简分数,对分子采用穷举的方法。根据最简分数定义知:分子分母的最大公约数为1,利用最大公约数的方法,判定分子与40......
  • 打卡 c语言趣味编程 列出真分数序列
    问题描述:按递增顺序依次列出所有分母为40,分子小于40的最简分数。分子、分母只有公因数1的分数叫做最简分数或者说分子和分母是互质数的分数,叫做最简分数,又称既约分数,如2/3,8/9,3/8等。思路:求分子小于40的最简分数,对分子采用穷举的方法。根据最简分数定义知:分子分母的......
  • Android 开机动画优化之序列帧旋转90度
    问题背景:公司项目是个VR一体机,可以理解成眼镜,用户看的是横屏。但是项目开始的代码基线是从手机迁移过来的,因此底层配置的是竖屏(即通过adbshellwmsize输出的宽小于高),systemserver启动后在DisplayContent中修改了屏幕方向orientation=1。我叙述一下实现播放开关机动画的方案......
  • 基于LSTM网络的时间序列数据预测matlab性能仿真
    1.算法仿真效果matlab2022a仿真结果如下:   2.算法涉及理论知识概要     长短期记忆网络(LSTM,LongShort-TermMemory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在......
  • 【剑指offer】-栈的压入、弹出序列-20/67
    1.题目描述输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。(注意:这两个序列的......
  • 自定义注解实现数据序列化时进行数据脱敏(基于springboot默认jackjson)、消息转换器
    消息转换器fastjson与jackjson问题在springboot中使用fastjson的@jsonField无效原因:在springboot默认有json(jackjson)解析工具,所以使用fastjson不会生效解决方案替换默认的解析工具(笔者不推荐,这里根据自己项目决定)fastjson替换默认的jackjson第一种方法bean方法packagecom......
  • 关于皕杰报表的序列生成函数
    在做报表的时候,经常需要生成一个序列,比如:字母序列a、b、c、d、e...皕杰报表本身提供了list函数来生成有限的枚举序列,使用如下:语法:list(valueExp1{,valueExp2{,valueExp3{,……}}})参数说明:valueExp(n)  可以是字符型数据,整型数据,浮点型数据,布尔型数据或表达式举例说明:例1:li......
  • 【web 开发】PHP8中数组的序列化和反序列化
    前言数组的序列化(serialize)用来将数组的数据转换为字符串,以方便传递和数据库的存储。与之相对应的操作就是反序列化(unserialize),把字符串数据转换为数组加以使用。数组的序列化主要通过serialize()函数来完成。字符串的反序列化主要通过unserialize()函数来完成。对象的序列化与反序......