前言 模块化编程的思想非常重要,通过模块化编程可以大幅减少重复的敲代码过程,同时代码可读性也会增加。本章将讲述如何使用libtorch搭建一些MLP和CNN的基本模块。
本教程禁止转载。同时,本教程来自知识星球【CV技术指南】更多技术教程,可加入星球学习。
欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。
【CV技术指南】CV全栈指导班、基础入门班、论文指导班 全面上线!!
MLP基本单元
首先是线性层的声明和定义,包括初始化和前向传播函数。代码如下:
class LinearBnReluImpl : public torch::nn::Module{
public:
LinearBnReluImpl(int intput_features, int output_features);
torch::Tensor forward(torch::Tensor x);
private:
//layers
torch::nn::Linear ln{nullptr};
torch::nn::BatchNorm1d bn{nullptr};
};
TORCH_MODULE(LinearBnRelu);
LinearBnReluImpl::LinearBnReluImpl(int in_features, int out_features){
ln = register_module("ln", torch::nn::Linear(torch::nn::LinearOptions(in_features, out_features)));
bn = register_module("bn", torch::nn::BatchNorm1d(out_features));
}
torch::Tensor LinearBnReluImpl::forward(torch::Tensor x){
x = torch::relu(ln->forward(x));
x = bn(x);
return x;
}
在MLP的构造线性层模块类时,我们继承了torch::nn::Module类,将初始化和前向传播模块作为public,可以给对象使用,而里面的线性层torch::nn::Linear和归一化层torch::nn::BatchNorm1d被隐藏作为私有变量。
定义初始化函数时,需要将原本的指针对象ln和bn进行赋值,同时将两者的名称也确定。前向传播函数就和pytorch中的forward类似。
CNN基本单元
CNN的基本单元构建和MLP的构建类似,但是又稍有不同,首先需要定义的时卷积超参数确定函数。
inline torch::nn::Conv2dOptions conv_options(int64_t in_planes, int64_t out_planes, int64_t kerner_size,
int64_t stride = 1, int64_t padding = 0, bool with_bias = false) {
torch::nn::Conv2dOptions conv_options = torch::nn::Conv2dOptions(in_planes, out_planes, kerner_size);
conv_options.stride(stride);
conv_options.padding(padding);
conv_options.bias(with_bias);
return conv_options;
}
该函数返回torch::nn::Conv2dOptions对象,对象的超参数由函数接口指定,这样可以方便使用。同时指定inline,提高Release模式下代码执行效率。
随后则是和MLP的线性模块类似,CNN的基本模块由卷积层,激活函数和归一化层组成。代码如下:
class ConvReluBnImpl : public torch::nn::Module {
public:
ConvReluBnImpl(int input_channel=3, int output_channel=64, int kernel_size = 3, int stride = 1);
torch::Tensor forward(torch::Tensor x);
private:
// Declare layers
torch::nn::Conv2d conv{ nullptr };
torch::nn::BatchNorm2d bn{ nullptr };
};
TORCH_MODULE(ConvReluBn);
ConvReluBnImpl::ConvReluBnImpl(int input_channel, int output_channel, int kernel_size, int stride) {
conv = register_module("conv", torch::nn::Conv2d(conv_options(input_channel,output_channel,kernel_size,stride,kernel_size/2)));
bn = register_module("bn", torch::nn::BatchNorm2d(output_channel));
}
torch::Tensor ConvReluBnImpl::forward(torch::Tensor x) {
x = torch::relu(conv->forward(x));
x = bn(x);
return x;
}
简单MLP
在MLP的例子中,我们以搭建一个四层感知机为例,介绍如何使用cpp实现深度学习模型。该感知机接受in_features个特征,输出out_features个编码后的特征。中间特征数定义为32,64和128,其实一般逆序效果更佳,但是只是作为例子也无关紧要。
class MLP: public torch::nn::Module{
public:
MLP(int in_features, int out_features);
torch::Tensor forward(torch::Tensor x);
private:
int mid_features[3] = {32,64,128};
LinearBnRelu ln1{nullptr};
LinearBnRelu ln2{nullptr};
LinearBnRelu ln3{nullptr};
torch::nn::Linear out_ln{nullptr};
};
MLP::MLP(int in_features, int out_features){
ln1 = LinearBnRelu(in_features, mid_features[0]);
ln2 = LinearBnRelu(mid_features[0], mid_features[1]);
ln3 = LinearBnRelu(mid_features[1], mid_features[2]);
out_ln = torch::nn::Linear(mid_features[2], out_features);
ln1 = register_module("ln1", ln1);
ln2 = register_module("ln2", ln2);
ln3 = register_module("ln3", ln3);
out_ln = register_module("out_ln",out_ln);
}
torch::Tensor MLP::forward(torch::Tensor x){
x = ln1->forward(x);
x = ln2->forward(x);
x = ln3->forward(x);
x = out_ln->forward(x);
return x;
}
每一层的实现均是通过前面定义的基本模块LinearBnRelu。
简单CNN
前面介绍了构建CNN的基本模块ConvReluBn,接下来尝试用c++搭建CNN模型。该CNN由三个stage组成,每个stage又由一个卷积层一个下采样层组成。这样相当于对原始输入图像进行了8倍下采样。中间层的通道数变化与前面MLP特征数变化相同,均为输入->32->64->128->输出。
class plainCNN : public torch::nn::Module{
public:
plainCNN(int in_channels, int out_channels);
torch::Tensor forward(torch::Tensor x);
private:
int mid_channels[3] = {32,64,128};
ConvReluBn conv1{nullptr};
ConvReluBn down1{nullptr};
ConvReluBn conv2{nullptr};
ConvReluBn down2{nullptr};
ConvReluBn conv3{nullptr};
ConvReluBn down3{nullptr};
torch::nn::Conv2d out_conv{nullptr};
};
plainCNN::plainCNN(int in_channels, int out_channels){
conv1 = ConvReluBn(in_channels,mid_channels[0],3);
down1 = ConvReluBn(mid_channels[0],mid_channels[0],3,2);
conv2 = ConvReluBn(mid_channels[0],mid_channels[1],3);
down2 = ConvReluBn(mid_channels[1],mid_channels[1],3,2);
conv3 = ConvReluBn(mid_channels[1],mid_channels[2],3);
down3 = ConvReluBn(mid_channels[2],mid_channels[2],3,2);
out_conv = torch::nn::Conv2d(conv_options(mid_channels[2],out_channels,3));
conv1 = register_module("conv1",conv1);
down1 = register_module("down1",down1);
conv2 = register_module("conv2",conv2);
down2 = register_module("down2",down2);
conv3 = register_module("conv3",conv3);
down3 = register_module("down3",down3);
out_conv = register_module("out_conv",out_conv);
}
torch::Tensor plainCNN::forward(torch::Tensor x){
x = conv1->forward(x);
x = down1->forward(x);
x = conv2->forward(x);
x = down2->forward(x);
x = conv3->forward(x);
x = down3->forward(x);
x = out_conv->forward(x);
return x;
}
假定输入一个三通道图片,输出通道数定义为n,输入表示一个[1,3,224,224]的张量,将得到一个[1,n,28,28]的输出张量。
简单LSTM
最后则是一个简单的LSTM的例子,用以处理时序型特征。在直接使用torch::nn::LSTM类之前,我们先顶一个返回torch::nn::LSTMOptions对象的函数,该函数接受关于LSTM的超参数,返回这些超参数定义的结果。
inline torch::nn::LSTMOptions lstmOption(int in_features, int hidden_layer_size, int num_layers, bool batch_first = false, bool bidirectional = false){
torch::nn::LSTMOptions lstmOption = torch::nn::LSTMOptions(in_features, hidden_layer_size);
lstmOption.num_layers(num_layers).batch_first(batch_first).bidirectional(bidirectional);
return lstmOption;
}
//batch_first: true for io(batch, seq, feature) else io(seq, batch, feature)
class LSTM: public torch::nn::Module{
public:
LSTM(int in_features, int hidden_layer_size, int out_size, int num_layers, bool batch_first);
torch::Tensor forward(torch::Tensor x);
private:
torch::nn::LSTM lstm{nullptr};
torch::nn::Linear ln{nullptr};
std::tuple<torch::Tensor, torch::Tensor> hidden_cell;
};
声明好LSTM以后,我们将内部的初始化函数和前向传播函数实现如下:
LSTM::LSTM(int in_features, int hidden_layer_size, int out_size, int num_layers, bool batch_first){
lstm = torch::nn::LSTM(lstmOption(in_features, hidden_layer_size, num_layers, batch_first));
ln = torch::nn::Linear(hidden_layer_size, out_size);
lstm = register_module("lstm",lstm);
ln = register_module("ln",ln);
}
torch::Tensor LSTM::forward(torch::Tensor x){
auto lstm_out = lstm->forward(x);
auto predictions = ln->forward(std::get<0>(lstm_out));
return predictions.select(1,-1);
}
欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。
【技术文档】《从零搭建pytorch模型教程》122页PDF下载
QQ交流群:470899183。群内有大佬负责解答大家的日常学习、科研、代码问题。
其它文章
CVPR'23|泛化到任意分割类别?FreeSeg:统一、通用的开放词汇图像分割新框架
全新YOLO模型YOLOCS来啦 | 面面俱到地改进YOLOv5的Backbone/Neck/Head
通用AI大型模型Segment Anything在医学图像分割领域的最新成果!
可复现、自动化、低成本、高评估水平,首个自动化评估大模型的大模型PandaLM来了
实例:手写 CUDA 算子,让 Pytorch 提速 20 倍
BEV专栏(一)从BEVFormer深入探究BEV流程(上篇)
可见光遥感图像目标检测(三)文字场景检测之Arbitrary
AI最全资料汇总 | 基础入门、技术前沿、工业应用、部署框架、实战教程学习
标签:教程,features,nn,int,torch,libtorch,forward,out,搭建 From: https://www.cnblogs.com/wxkang/p/17421713.html