首页 > 其他分享 >基于GA遗传优化的CDVRP,CVRP,DVRP,TSP以及VRPTW常见路径优化问题求解matlab仿真

基于GA遗传优化的CDVRP,CVRP,DVRP,TSP以及VRPTW常见路径优化问题求解matlab仿真

时间:2023-05-20 12:45:00浏览次数:39  
标签:DVRP 路径 个体 适应度 GA 最优 优化 TSP

1.算法仿真效果

matlab2022a仿真结果如下:

 

 

 

 

 

 

 

 

TSP最优路径

TSP最优路径

TSP最优路径

Best Route:

0 -> 2 -> 10 -> 5 -> 3 -> 6 -> 9 -> 1 -> 4 -> 7 -> 8 -> 0

Total Distance = 95.275 km

 

 

DVRP最优路径

DVRP最优路径

DVRP最优路径

总路程 = 198.801 km

Best Route:

0 -> 10 -> 5 -> 2 -> 0 -> 3 -> 6 -> 9 -> 1 -> 0 -> 7 -> 4 -> 8 -> 0

 

 

CVRP最优路径

CVRP最优路径

CVRP最优路径

总路程 = 198.801 km

Best Route:

0 -> 3 -> 6 -> 9 -> 1 -> 0 -> 7 -> 4 -> 8 -> 0 -> 10 -> 5 -> 2 -> 0

 

 

CDVRP最优路径

CDVRP最优路径

CDVRP最优路径

总路程 = 238.771 km

Best Route:

0 -> 3 -> 6 -> 9 -> 0 -> 10 -> 5 -> 2 -> 0 -> 8 -> 0 -> 7 -> 1 -> 4 -> 0

 

 

VRPTW最优路径

VRPTW最优路径

VRPTW最优路径

总路程 = 268.177 km

Best Route:

0 -> 7 -> 8 -> 0 -> 3 -> 1 -> 4 -> 0 -> 6 -> 9 -> 2 -> 0 -> 5 -> 10 -> 0

 

 

2.算法涉及理论知识概要

        遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。

 

       其主要步骤如下:

 

1.初始化

 

       选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。

 

       通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。

 

2.选择

 

      根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。

 

给出目标函数f,则f(bi)称为个体bi的适应度。以

 

为选中bi为下一代个体的次数。

 

显然.从式(3—86)可知:

 

(1)适应度较高的个体,繁殖下一代的数目较多。

 

(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。

 

这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。

 

3.交叉

 

       对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。

 

 

 

 

3.MATLAB核心程序

 

%% TSP
addpath 'TSP\';
%初始化
CityNum=size(City,1)-1;    %需求点个数
 
NIND=60;       %种群大小
MAXGEN=100;     %最大遗传代数
GGAP=0.9;       %代沟概率
Pc=0.9;         %交叉概率
Pm=0.05;        %变异概率
mindis = zeros(1,MAXGEN);
bestind = zeros(1,CityNum+2);
 
%初始化种群
Chrom=InitPop(NIND,CityNum);
 
%迭代
gen=1;
while gen <= MAXGEN
 
    [ttlDistance,FitnV]=Fitness(Distance,Chrom);  
    [mindisbygen,bestindex] = min(ttlDistance);
    
    mindis(gen) = mindisbygen; 
	bestind = Chrom(bestindex,:); 
    
    %选择
    SelCh=Select(Chrom,FitnV,GGAP);
    %交叉操作
    SelCh=Crossover(SelCh,Pc);
    %变异
    SelCh=Mutate(SelCh,Pm);
    SelCh=Reverse(SelCh,Distance);
    Chrom=Reins(Chrom,SelCh,FitnV);
    gen=gen+1;
end
 
%历史最短距离
mindisever = mindis(MAXGEN);  
bestroute = bestind; 
disp('TSP最优路径')
disp('TSP最优路径')
disp('TSP最优路径')
 
TextOutput(bestroute,mindisever) 
 
figure
subplot(121)
plot(mindis,'LineWidth',2) 
xlim([1 gen-1])
set(gca, 'LineWidth',1)
xlabel('Num of Iterations')
ylabel('Min Distance(km)')
title('TSP')
 
subplot(122)
DrawPath(bestroute,City)
 
 
Err1=mindis;
 
 
%% DVRP
addpath 'DVRP\';
%初始化
CityNum=size(City,1)-1;    
NIND=60;       %种群大小
MAXGEN=100;     %最大遗传代数
GGAP=0.9;       %代沟概率
Pc=0.9;         %交叉概率
Pm=0.05;        %变异概率
mindis = zeros(1,MAXGEN);
bestind = zeros(1,CityNum*2+1);
%初始化
Chrom=InitPop(NIND,CityNum,Distance,Travelcon);

 

  

 

标签:DVRP,路径,个体,适应度,GA,最优,优化,TSP
From: https://www.cnblogs.com/51matlab/p/17417043.html

相关文章

  • 基于GA遗传优化的CDVRP,CVRP,DVRP,TSP以及VRPTW常见路径优化问题求解matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:TSP最优路径TSP最优路径TSP最优路径BestRoute:0->2->10->5->3->6->9->1->4->7->8->0TotalDistance=95.275kmDVRP最优路径DVRP最优路径DVRP最优路径总路程=198.801kmBestRoute:0->10->......
  • generator 1(矩阵优化递推式+10倍增优化)
     x1,bx2(开始值) ......
  • 1086 Tree Traversals Again
    题目:Aninorderbinarytreetraversalcanbeimplementedinanon-recursivewaywithastack.Forexample,supposethatwhena6-nodebinarytree(withthekeysnumberedfrom1to6)istraversed,thestackoperationsare:push(1);push(2);push(3);pop();......
  • vite打包中性能优化方面
    1、静态文件按类型分包build中添加如下代码:build:{rollupOptions:{output:{chunkFileNames:'static/js/[name]-[hash].js',entryFileNames:'static/js/[name]-[hash].js',assetFileNames:'static/[ext]/[name]-[hash].......
  • 基于PSO优化的OFDM系统PAPR抑制PTS算法MATLAB仿真
    1.算法仿真效果matlab2022a仿真结果如下:    2.算法涉及理论知识概要       部分传输序列(PartialTransmitSequence,PTS)由于其不受载波数量限制,并且能够有效的,无失真的降低OFDM信号峰均比,而受到广泛关注。部分传输序列算法(PTS)最初是由S.H.Muller和J.B.H......
  • 基于FPGA的Hamming编译码verilog开发实现,包括testbench测试程序
    1.算法仿真效果vivado2019.2仿真结果如下:    2.算法涉及理论知识概要        汉明码(HammingCode),是在电信领域的一种线性调试码,以发明者理查德·卫斯里·汉明的名字命名。汉明码在传输的消息流中插入验证码,当计算机存储或移动数据时,可能会产生数据位错误,以侦......
  • 记一次 Oracle 下的 SQL 优化过程
    1.介绍事情是这样的,UAT环境的测试小伙伴向我扔来一个小bug,说是一个放大镜的查询很慢,转几分钟才出数据,我立马上开发环境试了一下,很快啊我说......
  • 接口优化
    转载:https://mp.weixin.qq.com/s/0ez_mkyr0i4MZd7DEN7M8A 接口性能优化对于从事后端开发的同学来说,肯定再熟悉不过了,因为它是一个跟开发语言无关的公共问题。该问题说简单也简单,说复杂也复杂。有时候,只需加个索引就能解决问题。有时候,需要做代码重构。有时候,需要增加缓存。......
  • RK3588安装ROS 解决Rviz以及Gazebo报错问题
    RK3588安装ROS解决Rviz以及Gazebo报错问题InfoOperatingSystem&VersionUbuntu20.04KernelVersion(LinuxOnly)5.10.110PlatformROC-RK3588S-PC一、前言记录一下在RK3588上安装ubuntu20.04和ROS的过程,很早之前配置过,最近又重新配置了一遍,特此记录一......
  • 【新作开发中】优化了对话逻辑
    优化了对话逻辑,使用常规RPG游戏中那样,点一次Next开始逐字显示,再点一次直接全文显示,再点一次Next开始逐字显示下一段对话。  ......