实例 1 将分组后的字符拼接
import pandas as pd
df=pd.DataFrame({
'user_id':[1,2,1,3,3],
'content_id':[1,1,2,2,2],
'tag':['cool','nice','clever','clever','not-bad']
})
df
将df按content_id分组,然后将每组的tag用逗号拼接
df.groupby('content_id')['tag'].apply(lambda x:','.join(x)).to_frame()
实例2 统计每个content_id有多少个不同的用户
import pandas as pd
df = pd.DataFrame({
'user_id':[1,2,1,3,3,],
'content_id':[1,1,2,2,2],
'tag':['cool','nice','clever','clever','not-bad']
})
df.groupby("content_id")["user_id"].nunique().to_frame()
实例3 分组结果排序
import pandas as pd
df = pd.DataFrame({
'value':[20.45,22.89,32.12,111.22,33.22,100.00,99.99],
'product':['table','chair','chair','mobile phone','table','mobile phone','table']
})
df
df1 = df.groupby('product')['value'].sum().to_frame().reset_index()
df1
按产品product分组后,然后value求和:
df2 = df.groupby('product')['value'].sum().to_frame().reset_index().sort_values(by='value')
df2
实例4 分组大小绘图
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({
'value':[20.45,22.89,32.12,111.22,33.22,100.00,99.99],
'product':['table','chair','chair','mobile phone','table','mobile phone','table']
})
df
plt.clf()
df.groupby('product').size().plot(kind='bar')
plt.show()
实例5 分组求和绘图
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({
'value':[20.45,22.89,32.12,111.22,33.22,100.00,99.99],
'product':['table','chair','chair','mobile phone','table','mobile phone','table']
})
df
plt.clf()
df.groupby('product').sum().plot(kind='bar')
plt.show()
实例 6 使用agg函数
import pandas as pd
df = pd.DataFrame({
'value':[20.45,22.89,32.12,111.22,33.22,100.00,99.99],
'product':['table','chair','chair','mobile phone','table','mobile phone','table']
})
grouped_df = df.groupby('product').agg({'value':['min','max','mean']})
grouped_df
grouped_df.columns = ['_'.join(col).strip() for col in grouped_df.columns.values]
grouped_df = grouped_df.reset_index()
grouped_df
实例7 遍历分组
for key,group_df in df.groupby('product'):
print("the group for product '{}' has {} rows".format(key,len(group_df)))
the group for product 'chair' has 2 rows
the group for product 'mobile phone' has 2 rows
the group for product 'table' has 3 rows
源代码:Python008-Pandas GroupBy 使用教程.ipynb
标签:教程,df,product,value,GroupBy,pd,table,chair,Pandas From: https://blog.51cto.com/u_16116809/6291762