首页 > 其他分享 >Flatten(因式分解)

Flatten(因式分解)

时间:2022-09-23 16:12:56浏览次数:75  
标签:dots 因式分解 int res ll leq Flatten include

题意

给定\(N\)个正整数\(A_1,A_2,\dots, A_N\)。考虑正整数\(B_1, B_2, \dots, B_N\)满足如下条件:

对于任意\(i, j\),有\(1 \leq i < j \leq N, A_iB_i = A_jB_j\)。

求\(B_1+B_2+\dots + B_N\)的最小值,结果对\(10^9+7\)取模。

题目链接:https://atcoder.jp/contests/abc152/tasks/abc152_e

数据范围

\(1 \leq N \leq 10^4\)
\(1 \leq A_i \leq 10^6\)

思路

根据条件,我们可以发现\(A_1B_1 = A_2B_2 = \cdots = A_NB_N\),因此\(B_i = [A_1, \dots, A_N] / A_i\)。

由于最小公倍数数量级较大,因此不能直接相乘去做。因此对\(A_i\)分解质因数即可。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>

using namespace std;

typedef long long ll;

const int N = 10010, mod = 1e9 + 7;

int n;
ll a[N];
map<ll, ll> mp;

ll qmi(ll a, ll b)
{
    ll res = 1;
    while(b) {
        if(b & 1) res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}

int main()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; i ++) scanf("%lld", &a[i]);
    if(n == 1) printf("1\n");
    else {
        for(int i = 1; i <= n; i ++) {
            ll t = a[i];
            for(int j = 2; j <= t / j; j ++) {
                if(t % j == 0) {
                    ll cnt = 0;
                    while(t % j == 0) {
                        t /= j;
                        cnt ++;
                    }
                    if(!mp.count(j)) mp[j] = cnt;
                    else mp[j] = max(mp[j], cnt);
                }
            }
            if(t) {
                if(!mp.count(t)) mp[t] = 1;
                else mp[t] = max(mp[t], 1ll);
            }
        }
        ll ans = 1;
        for(auto p : mp) {
            ans = ans * qmi(p.first, p.second) % mod;
        }
        ll res = 0;
        for(int i = 1; i <= n; i ++) {
            res = (res + ans * qmi(a[i], mod - 2) % mod) % mod;
        }
        printf("%lld\n", res);
    }
    return 0;
}

标签:dots,因式分解,int,res,ll,leq,Flatten,include
From: https://www.cnblogs.com/miraclepbc/p/16723072.html

相关文章