首页 > 其他分享 >R语言决策树、随机森林、逻辑回归临床决策分析NIPPV疗效和交叉验证

R语言决策树、随机森林、逻辑回归临床决策分析NIPPV疗效和交叉验证

时间:2023-05-05 22:45:12浏览次数:36  
标签:NIPPV 结局 ## 决策 效用 datanew 决策树 决策分析

全文链接:http://tecdat.cn/?p=32295

原文出处:拓端数据部落公众号

临床决策(clinical decision making)是医务人员在临床实践过程中,根据国内外医学科研的最新进展,不断提出新方案,与传统方案进行比较后,取其最优者付诸实施,从而提高疾病诊治水平的过程。

在临床医疗实践中,许多事件的发生是随机的,对个体患者来说治疗措施的疗效、远期预后常常是不确定的和不可准确预测的,究竟何种选择最好很难简单做出决定。

本文帮助客户进行决策分析NIPPV疗效数据,在充分评价不同方案的风险及利益之后推荐一个最佳的方案,最大限度地保障患者权益,减少临床实践及卫生决策失误。

决策树分析步骤

决策树分析法是通过决策树图形展示临床重要事件的可能发展过程及结局,比较各种备选方案的预期结果从而进行择优决策的方法。决策树分析法通常有6个步骤。

明确决策问题,确定备选方案

对欲解决的问题有清楚的界定,应列出所有可能的备选方案。在决策树上决策的选择应用决策结来代表,通常用方框表示,每个备选方案用从方框引出的臂表示,表示最终决策结果的决策结总是放在决策树的最左端。

用树形图展示决策事件决策

树的画法是从左至右,可能发生的最终结局总是放在决策树最右端,用小三角形表示,称为结局结。每一种结局都是一系列机会事件按时间顺序自然发展的结果,在决策树上这种事件,用圆圈符号表示,称为机会结。每一个机会事件的直接结局用与圆圈联结的臂表示,不同机会结从左至右的顺序是事件发生的时相关系的反映。一个机会结可以有多个直接结局,从每个机会结引出的结局必须是独立、互不包容的状态。

标明各种事件可能出现的概率

每一种事件出现的可能性用概率表示,一般应从质量可靠的文献中查找并结合专家的临床经验及本单位情况进行推测。从每一个事件发生的各种后续事件的可能性服从概率论的加法定律,即每一个机会结发出的直接结局的各臂概率之和必须为1.0。

对最终结局赋值

可用效用值为最终结局赋值,效用值是对患者健康状态偏好程度的测量,通常应用0~1的数字表示,最好的健康状态为1,死亡为0。有时可以用寿命年、质量调整寿命年表示。

计算每一种备选方案的期望值

计算备选方案期望值的方法是从“树尖”开始向“树根”的方向(从右向左)进行计算,效用值与其发生概率的乘积即是期望效用值,每个机会结的期望效用值为该机会结所有可能事件的期望效用值之总和。在决策树中如果有次级决策结时,与机会结期望效用值的计算方法不同,只能选择可提供最大期望效用值的决策臂,而忽略其他臂。最后,选择期望值最高的备选方案为决策方案。

对结论进行敏感性分析

由于临床实践中的事件发生概率值及健康状态的效用值等都可能在一定范围内变动,需要进行敏感性分析。敏感性分析要回答的问题是:当概率及结局效用值等在一个合理的范围内变动时,决策分析的结论方向会改变吗?敏感性分析的目的是测试决策分析结论的稳定性。

NIPPV疗效数据

image.png

剔除缺失数据

datanew=**na.omit**(datanew)

建立决策树:疗效

datanew.train1=datanew.train[train2,]  
datanew.train2=datanew.train[-train2,]

剪枝

CARTmodel1 = **rpart**( (疗效) ~.

image.png

**printcp**(CARTmodel1)

image.png

不剪枝

image.png

输出决策树cp值

image.png

根据cp值对决策树进行剪枝

able[**which.min**(CARTmodel$c
**prune**(CARTmodel, cp= C

image.png image.png

对数据进行预测

image.png

得到训练集混淆矩阵准确度和MSE

#########################################准确度  
**sum**(**diag**(tab))/**sum**(tab)

## [1] 0.7755102

###############################################MSE##############  
  
MSE=function(y,pred)**sqrt**(**mean**(**as.numeric**(y)-**as.numeric**(pred))^2)  
  
**MSE**(tree.pred,datanew.test$疗效)

## [1] 0.06122449

用predict的算下错率

image.png

预测分类号

image.png

输出结果到excel


**brules.table**(CARTmodel2)[,**c**("Subrule","Variable","Value")]

image.png

变量重要程度

image.png

随机森林

image.png

图片1.png

变量重要程度

**importance**(rf)

image.png

**plot**(d,center=TRUE,leaflab=

image.png

混淆矩阵

 


###########################################准确率  
**sum**(**diag**(tab))/**sum**(tab)

## [1] 0.8163265

*# [1] 0.7755102*  
  
###############################################MSE##############  
**MSE**(**predict**(rf,datanew.test),datanew.test$疗效)

## [1] 0.02040816

预测分类号

image.png

image.png

逻辑回归模型

M2 <- **glm**(formula = 疗效 ~ .,fami

迭代回归之前的回归模型参数

image.png

迭代回归后的模型参数

image.png

逻辑回归预测

image.png

#########################################准确度  
**sum**(**diag**(tab))/**sum**(tab)

## [1] 0.7755102

##############################################预测分类号  
pred

##   2   3   9  13  14  15  17  22  23  26  29  30  32  35  38  39  42  44  
##   1   1   1   1   1   1   1   1   1   2   1   1   2   2   1   1   1   2  
##  52  53  56  57  60  61  63  64  66  68  69  79  83  87  88  92  94  99  
##   1   2   1   1   1   2   1   1   2   1   1   2   1   2   2   1   2   1  
## 102 105 106 108 109 112 113 118 123 134 139 140 143  
##   2   2   2   2   2   2   1   1   1   2   2   2   1

交叉验证

决策树交叉验证

cv.model=**cv.tree**(cpus.ltr, , prune.tree,K =10)  
best.size <- cv.model$size[**which**(cv.model$dev==**min**(cv.model$dev))] *# wh*

image.png

十折交叉验证

k=10  
for(kk in 1:k){  
  index=**sample**(1:**dim**(data)[1],**floor**(**dim**(data)[1]*(1/k)),replace=F) *#筛选样本*  
  test=**as.data.frame**(data[index,]) *#训练集*
  
  
  *#正确率*  
precisek/k

## [1] 0.7285714

随机森林交叉验证

**rfcv**(**na.omit**(datanew.train), **na.omit**(datanew.train)$疗效, cv.fold=10)

image.png

十折交叉验证

*#正确率*  
precisek/k

## [1] 0.8424495

逻辑回归交叉验证

(cv.err <- **cv**

image.png

summary(cv.err)

image.png

十折交叉验证

*#正确率*  
precisek/k

## [1] 0.6416667

QQ截图20220110153203.png

最受欢迎的见解

1.R语言分布式滞后非线性模型(DLNM)空气污染研究温度对死亡率影响建模

2.R语言分布滞后线性和非线性模型(DLNM)分析空气污染(臭氧)、温度对死亡率时间序列数据

3.R语言群组变量选择、组惩罚GROUP LASSO套索模型预测分析新生儿出生体重风险因素数据和交叉验证、可视化

4.R语言逻辑回归、随机森林、SVM支持向量机预测FRAMINGHAM心脏病风险和模型诊断可视化

5.R语言非线性混合效应 NLME模型(固定效应&随机效应)对抗哮喘药物茶碱动力学研究

6.R语言使用限制平均生存时间RMST比较两条生存曲线分析肝硬化患者

7.分类回归决策树交互式修剪和更美观地可视化分析细胞图像分割数据集

8.PYTHON深度学习实现自编码器AUTOENCODER神经网络异常检测心电图ECG时间序列

9.R语言如何在生存分析与Cox回归中计算IDI,NRI指标

标签:NIPPV,结局,##,决策,效用,datanew,决策树,决策分析
From: https://www.cnblogs.com/tecdat/p/17375598.html

相关文章

  • 机器学习算法 随机森林学习 之决策树
    随机森林是基于集体智慧的一个机器学习算法,也是目前最好的机器学习算法之一。随机森林实际是一堆决策树的组合(正如其名,树多了就是森林了)。在用于分类一个新变量时,相关的检测数据提交给构建好的每个分类树。每个树给出一个分类结果,最终选择被最多的分类树支持的分类结果。回归则是不......
  • 决策树算法总结
    决策树(DecisionTree)决策树是一种树形结构,以信息熵为度量构造一棵熵值下降最快的树,它每个内部节点表示在某个特征上的分割使得分割前后熵值下降最快,到叶子结点处的熵值为零,此时每个叶结点中的样本都被归为同一类(训练时叶结点中数据的真实类别未必为同一类)。决策树算法递归的选择......
  • m基于ID3决策树算法的能量管理系统matlab仿真
    1.算法描述       ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成的决策树能完美分类训练样例。    ......
  • PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SV
    全文下载链接:http://tecdat.cn/?p=26219最近我们被客户要求撰写关于银行机器学习的研究报告,包括一些图形和统计输出。该数据与银行机构的直接营销活动相关,营销活动基于电话。通常,需要与同一客户的多个联系人联系,以便访问产品(银行定期存款)是否会(“是”)或不会(“否”)订阅银行数据集我......
  • 基于决策树算法的病例类型诊断matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:2.算法涉及理论知识概要ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续这个过程,直到生成......
  • 数据分享|R语言决策树和随机森林分类电信公司用户流失churn数据和参数调优、ROC曲线可
    原文链接:http://tecdat.cn/?p=26868最近我们被客户要求撰写关于电信公司用户流失的研究报告,包括一些图形和统计输出。在本教程中,我们将学习覆盖决策树和随机森林。这些是可用于分类或回归的监督学习算法下面的代码将加载本教程所需的包和数据集。library(tidyverse)# 电信......
  • Chapter3 绘制决策树
    绘制决策树1.概述我们在上个博客已经学会使用代码来构造决策树了。但是,为了让构造出来的决策树具有可读性,我们还需要绘制决策树。2.设定样式#该代码的作用是设定节点和箭头的样式#该代码位于treePlotter.py文件中importmatplotlib.pyplotasplt'''在mat......
  • 数据分享|R语言用RFM、决策树模型顾客购书行为的数据预测|附代码数据
    全文链接:http://tecdat.cn/?p=30330最近我们被客户要求撰写关于RFM、决策树模型的研究报告,包括一些图形和统计输出。团队需要分析一个来自在线零售商的数据该数据包含了78周的购买历史。该数据文件中的每条记录包括四个字段。客户的ID(从1到2357不等),交易日期,购买的书籍数量,以及......
  • 决策树可视化Graphviz中文乱码
    输出svg时中文显示正常!!!fromsiximportStringIO#可视化dot_data=StringIO()tree.export_graphviz(clf,out_file=dot_data,feature_names=feature_name,class_names=target_name,filled=True,rounded=True,special_characte......
  • 决策树
    决策树是用二叉树形图来表示处理逻辑的一种工具。可以直观、清晰地表达加工的逻辑要求。特别适合于判断因素比较少、逻辑组合关系不复杂的情况。决策树提供了一种展示类似在什么条件下会得到什么值这类规则的方法。比如,在贷款申请中,要对申请的风险大小做出判断,图是为了解决这......