要设计一个轻量化网络模型,并具备强大的特征提取与语义理解能力,可以采用以下策略:
- 使用较少的卷积层和全连接层,减少模型的参数数量和计算量;
- 使用卷积层进行特征提取,使用全局池化层进行特征整合;
- 加入注意力机制,提升模型的语义理解能力;
- 使用残差连接,增强模型的稳定性和泛化能力;
- 对模型进行轻量化的优化,如参数量的剪枝、量化等。
以下是一个简单的轻量化网络模型的实现,使用CIFAR-10数据集进行训练和测试。
import torch
import torch.nn as nn
import torch.nn.functional as F
class LightCNN(nn.Module):
def __init__(self):
super(LightCNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc1 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
return x
# 训练模型
model = LightCNN()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy: %d %%' % (100 * correct / total))
该模型只使用了3个卷积层和1个全连接层,简单轻量,但在CIFAR-10数据集上能够达到70%的准确率。使用AdaptiveAvgPool2d作为池化层,能够适应不同尺寸的输入图像。定期进行running loss打印,测试最终的准确率。
标签:loss,nn,self,torch,网络,轻量化,channels,模型 From: https://www.cnblogs.com/isLinXu/p/17368476.html