首页 > 其他分享 >R语言实现GWAS结果显著SNP位点归类提取与变异类型转化

R语言实现GWAS结果显著SNP位点归类提取与变异类型转化

时间:2023-04-26 22:13:08浏览次数:45  
标签:GWAS en SNP phe snp var 位点 find

GWAS结果显著SNP位点归类提取与变异类型转化

根据GWAS得到的Rresult文件信息,能够找出每个snp位点对应的显著性情况和基因变异信息,接下来,需要根据表格中的信息进行归纳总结,对不同显著性层次进行区分,找出可能性最大的点,过程比较繁琐。

这里笔者分享一个算法,使统计SNP和变异类型变的更加简便快捷,主要基于R语言的tidyverse完成。


主要步骤与思路解析

  • 加载R包与环境,表型和基因列表文件
  • 定义变异信息转换函数
  • 创建输出数据框,包括基因和注释信息
  • 迭代筛选符合要求的SNP
  • 按照多个层次依次统计显著情况
  • 结果合并与注释

项目运行环境

  • centos7 linux
  • R4.2.3

操作步骤

加载R包

library(tidyverse)
library(writexl)
library(xlsx)

读取输入文件

list_phe <- read.table("./01_scripts/list_phe.txt",header = F)
# list_gene <- read.table("./01_scripts/list_gene.txt",header = F)
list_gene <- read.table("./17_GWAS_SNP_varient_find/gene.id",header = F)
varient_db <- read.table("./01_scripts/function/varient_name.txt",sep = "\t",header = F)

主要依赖三个文件,phe为变形列表,需要与GWAS结果的phe一致,gene为基因ID列表,varient_db是变异类型注释库,包含一一对应的变异信息。

变异信息转换

# 定义一个转换变异的函数
varient_name <- function(x){
      if (x %in% varient_db$V1){
            for (i in 1:nrow(varient_db)){
                  if (varient_db$V1[i]==x){
                        return(varient_db$V2[i])
                  }
            } 
      }else{
            return(x)
      }
}

这里定义一个函数,对输入的变异类型自动查找匹配的注释信息,若出现不存在于已有的变异类型,则返回原始值,后续结果中方便检查和校正。

创建输出数据框

out <- list_gene
colnames(out) <- "gene"
out$additon <- NA

在计算开始前,创建一个空数据框,用于迭代过程中添加信息,提前分配储存空间,其中第一列为基因ID,第二列为注释。

迭代筛选算法

下面我提供了两种思路,方法一是先对每个表型下的所有snp进行判断,如果存在大于阈值的显著位点则备注,反之舍弃。方法二是先找出单个SNP,然后再判断该位点处有多少个表型符合要求,如果存在多个表型均显著,则将其归纳统计到一起。

for (job in list_gene$V1){
      print(job)
      df <- read.xlsx(paste0("./16_out_GWAS_and_T/",job,"_all.xlsx"),sheetIndex = 1)
      
      # 法一:寻找每个表型下的SNP
      # 7  9 11 13 15 17 19 21 23 25 27 29 为待提取的值
      # for (i in seq(7,29,2)){ 
      #       phe <- colnames(df)[i]
      #       df_p7_snp <- df %>% arrange(!!sym(phe)) %>% filter(!!sym(phe)>7)
      #       df_p3_snp <- df %>% arrange(!!sym(phe)) %>% filter(!!sym(phe)>3) %>% filter(!!sym(phe)<7)
      #       # P值大于7
      #       var_en <- df_p7_snp$T_eff[1] %>% str_split("[,]") %>% str_split("[|]")
      #       var_en <- var_en[[1]][2]
      #       var_cn <- varient_name(var_en)
      # }
      
      # 法二:寻找每个snp下符合的表型
      find <- matrix(ncol = 4,nrow = 0)
      colnames(find) <- c("snp","var","p","phe")
      for (i in 1:nrow(df)){
            snp_name <- df$SNP[i]
            if (is.na(df$T_eff[i])){next}
            snp_var_en <- df$T_eff[i] %>% str_split("[,]")
            snp_var_en <- snp_var_en[[1]][1] %>% str_split("[|]")
            if (substr(snp_var_en,4,22)!=job){next}
            snp_var_en <- snp_var_en[[1]][2]
            snp_var_en <- varient_name(snp_var_en)
            snp_phe_p <- df[i,c(seq(7,29,2))]
            find_phe <- c()
            
            for (i in 1:ncol(snp_phe_p)){
                  if (snp_phe_p[1,i]>7){
                        find_phe <- c(find_phe,colnames(snp_phe_p)[i])
                  }
            }
            find_snp <- c(snp_name,snp_var_en,"[P>7]",paste0(find_phe,collapse = "+"))
            if (find_snp[4]!=""){
                  find <- rbind(find,find_snp)
            }
      }

      if (nrow(find) == 0){
      find <- matrix(ncol = 4,nrow = 0)
      colnames(find) <- c("snp","var","p","phe")
      for (i in 1:nrow(df)){
            snp_name <- df$SNP[i]
            if (is.na(df$T_eff[i])){next}
            snp_var_en <- df$T_eff[i] %>% str_split("[,]")
            snp_var_en <- snp_var_en[[1]][1] %>% str_split("[|]")
            if (substr(snp_var_en,4,22)!=job){next}
            snp_var_en <- snp_var_en[[1]][2]
            
            snp_var_en <- varient_name(snp_var_en)
            snp_phe_p <- df[i,c(seq(7,29,2))] 
            find_phe <- c()
            
            for (i in 1:ncol(snp_phe_p)){
                  if (snp_phe_p[1,i]>5){
                        find_phe <- c(find_phe,colnames(snp_phe_p)[i])
                  }
            }
            find_snp <- c(snp_name,snp_var_en,"[P>5]",paste0(find_phe,collapse = "+"))
            if (find_snp[4]!=""){
                  find <- rbind(find,find_snp)
            }
         }
      }
      
      if (nrow(find) == 0){
            find <- matrix(ncol = 4,nrow = 0)
            colnames(find) <- c("snp","var","p","phe")
            for (i in 1:nrow(df)){
                  
                  snp_name <- df$SNP[i]
                  if (is.na(df$T_eff[i])){next}
                  snp_var_en <- df$T_eff[i] %>% str_split("[,]")
                  snp_var_en <- snp_var_en[[1]][1] %>% str_split("[|]")
                  if (substr(snp_var_en,4,22)!=job){next}
                  snp_var_en <- snp_var_en[[1]][2]
                  snp_var_en <- varient_name(snp_var_en)
                  snp_phe_p <- df[i,c(seq(7,29,2))] 
                  
                  find_phe <- c()
                  for (i in 1:ncol(snp_phe_p)){
                        if (snp_phe_p[1,i]>3){ 
                              find_phe <- c(find_phe,colnames(snp_phe_p)[i])
                        }
                  }
                  find_snp <- c(snp_name,snp_var_en,"[P>3]",paste0(find_phe,collapse = "+"))
                  if (find_snp[4]!=""){
                        find <- rbind(find,find_snp)
                  }
            }
      }
      
      var_info <- c()
      out_info <- c()
      if (nrow(find)==0){
            out_info <- "GAPIT:log10.P < 3"
      }else{
            for (i in 1:nrow(find)){
                  var_info <- c(var_info,find[i,2],find[i,1],find[i,3],paste0("(",find[i,4],"),"))
            }
            out_info <- paste0(nrow(find),"个-GAPIT分析",paste0(var_info,collapse =""))
            out_info <- substr(out_info,1,nchar(out_info)-1)
      }

      for (i in 1:nrow(out)){
            if (identical(out$gene[i],job)){
                  out$additon[i] <- out_info
                  break
            }
      }
}

上述算法的核心是先从基因列表中取一个基因,然后找这个基因对应的snp和表型,如果找到某些snp在多个表型中显著性都大于7,则将其添加到注释信息,但是如果没有大于7的位点,则开始继续寻找是否存在大于5的位点,以此类推,若也没有大于5的点,则寻找大于3的位点。

该过程将显著区间分为三层,只有上层个数为零时,才会启动下一层的搜索,因此保证了每次结果的显著性差异保持在相对较平均的范围中,防止过大过小的位点同时选中。

结果保存

write.xlsx(out,
    "./17_GWAS_SNP_varient_find/gene_infomation.xlsx",
    sheetName = "varient",
    row.names = F,col.names = T)

结果文件保存在out变量中,将其输出为excel即可,如有其它想法可以根据out再进行深入分析,本文不做延伸。

本文由mdnice多平台发布

标签:GWAS,en,SNP,phe,snp,var,位点,find
From: https://www.cnblogs.com/JewelZ/p/17357525.html

相关文章

  • 关于水稻SNP的填充面板(Imputation Panel)
    最近在想,水稻起码已经测序了上万份材料,为什么还没有开发出一个像样的imputationpanel?网上一查,实际上很多人有想过,有做过,也发表过高水平文章。比如3K数据一发表,康奈尔大学的SusanMcCouch就在NC上发表了panel及其imputationpipeline。Animputationplatformtoenhanceinteg......
  • SNP Glue™2211通过Rise with SAP S/4HANA®Cloud集成认证
    德国SNP公司——SAP生态环境中先进的数字化转型、自动化数据迁移、数据管理软件供应商。于2023年3月3日宣布,其软件产品SNPGlue2211已通过SAP®认证,与RISEwithSAPS/4HAN......
  • kafka重置消费位点
    kafka重置消费位点一般分几种情况重置到最新的消费位点重置到最早的消费位点根据时间戳重置消费位点跟据指定偏移量重置消费位点基于kafka2.0.0packagecom.real......
  • c语言之各种printf(printf, sprintf, snprintf, swprintf, fprintf, fwprintf, vsprin
    一、v|s|f|n|w的含义v:参数作为va_list一个整体传入s:输出对象为内存缓冲区(char*,wchar_t*)f:输出对象为文件流(char*,wchar_t*)w:宽字符串版本n......
  • GWAS:mtag (Multi-Trait Analysis of GWAS) 分析
    mtag(Multi-TraitAnalysisofGWAS)作用:通过对多个表型相似的GWASsummary结果进行联合分析,发现更多的表型相关基因座。以抑郁症状、神经质和主观幸福感这三个表型为例,......
  • 【c&c++】C语言snprintf()函数用法
    一、函数原型snprintf(),为函数原型intsnprintf(char*str,size_tsize,constchar*format,...)。二、函数介绍将可变个参数(...)按照format格式化成字符串,然后将其......
  • 3. 主从复制简单搭建(基于位点)
    1.配置参数:server_id:主备server都要配置,数字要不一样,取值范围:1~2^32  log_bin :要开启  log_slave_updates:要开启2.创建用户mysql>CREATEUSE......
  • SNP通过Rise with SAP迁移到Azure云实践自身转型
    SNP是世界领先的管理复杂数字化转换流程的软件提供商,SAP全球金牌合作伙伴。为SAP用户系统提供系统升级、系统拆分、合并、数据标准化、ERP归档等数据转型业务。与ERP环境中......
  • GWAS中的effective sample size
    Forcontinuoustraits,theeffectivesamplesizeisthetotalsamplesize;Forbinarytraits,theeffectivesamplesizeisNcase*Ncontrol/(Ncase+Ncontrol).出......
  • snprintf 函数用法详解
    snprintf(),函数原型为intsnprintf(char*str,size_tsize,constchar*format,...)两点注意:(1)如果格式化后的字符串长度<size,则将此字符串全部复制到str中,并给其......