首页 > 其他分享 >Hadoop、Storm和Spark 三者的区别、比较

Hadoop、Storm和Spark 三者的区别、比较

时间:2023-04-25 16:03:18浏览次数:37  
标签:计算 Hadoop hadoop Storm storm Spark 数据


版权声明:欢迎转载,注明作者和出处就好!如果不喜欢或文章存在明显的谬误,请留言说明原因再踩哦,谢谢,我也可以知道原因,不断进步!

一、hadoop和Storm该选哪一个?

为了区别hadoop和Storm,该部分将回答如下问题:
1.hadoop、Storm各是什么运算
2.Storm为什么被称之为流式计算系统
3.hadoop适合什么场景,什么情况下使用hadoop
4.什么是吞吐量

首先整体认识:Hadoop是磁盘级计算,进行计算时,数据在磁盘上,需要读写磁盘;Storm是内存级计算,数据直接通过网络导入内存。读写内存比读写磁盘速度快n个数量级。根据Harvard CS61课件,磁盘访问延迟约为内存访问延迟的75000倍。所以Storm更快。

注释:
1. 延时 , 指数据从产生到运算产生结果的时间,“快”应该主要指这个。
2. 吞吐, 指系统单位时间处理的数据量。

storm的网络直传、内存计算,其时延必然比hadoop的通过hdfs传输低得多;当计算模型比较适合流式时,storm的流式处理,省去了批处理的收集数据的时间;因为storm是服务型的作业,也省去了作业调度的时延。所以从时延上来看,storm要快于hadoop。

从原理角度来讲:

Hadoop M/R基于HDFS,需要切分输入数据、产生中间数据文件、排序、数据压缩、多份复制等,效率较低。

Storm 基于ZeroMQ这个高性能的消息通讯库,不持久化数据。

为什么storm比hadoop快,下面举一个应用场景
说一个典型的场景,几千个日志生产方产生日志文件,需要进行一些ETL操作存入一个数据库。

假设利用hadoop,则需要先存入hdfs,按每一分钟切一个文件的粒度来算(这个粒度已经极端的细了,再小的话hdfs上会一堆小文件),hadoop开始计算时,1分钟已经过去了,然后再开始调度任务又花了一分钟,然后作业运行起来,假设机器特别多,几钞钟就算完了,然后写数据库假设也花了很少的时间,这样,从数据产生到最后可以使用已经过去了至少两分多钟。
而流式计算则是数据产生时,则有一个程序去一直监控日志的产生,产生一行就通过一个传输系统发给流式计算系统,然后流式计算系统直接处理,处理完之后直接写入数据库,每条数据从产生到写入数据库,在资源充足时可以在毫秒级别完成。

同时说一下另外一个场景:
如果一个大文件的wordcount,把它放到storm上进行流式的处理,等所有已有数据处理完才让storm输出结果,这时候,你再把它和hadoop比较快慢,这时,其实比较的不是时延,而是比较的吞吐了。


最主要的方面:Hadoop使用磁盘作为中间交换的介质,而storm的数据是一直在内存中流转的。
两者面向的领域也不完全相同,一个是批量处理,基于任务调度的;另外一个是实时处理,基于流。
以水为例,Hadoop可以看作是纯净水,一桶桶地搬;而Storm是用水管,预先接好(Topology),然后打开水龙头,水就源源不断地流出来了。


Storm的主工程师Nathan Marz表示: Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm之于实时处理,就好比Hadoop之于批处理。Storm保证每个消息都会得到处理,而且它很快——在一个小集群中,每秒可以处理数以百万计的消息。更棒的是你可以使用任意编程语言来做开发。
Storm的主要特点如下:
1.简单的编程模型。类似于MapReduce降低了并行批处理复杂性,Storm降低了进行实时处理的复杂性。
2.可以使用各种编程语言。你可以在Storm之上使用各种编程语言。默认支持Clojure、Java、Ruby和Python。要增加对其他语言的支持,只需实现一个简单的Storm通信协议即可。
3.容错性。Storm会管理工作进程和节点的故障。
4.水平扩展。计算是在多个线程、进程和服务器之间并行进行的。
5.可靠的消息处理。Storm保证每个消息至少能得到一次完整处理。任务失败时,它会负责从消息源重试消息。
6.快速。系统的设计保证了消息能得到快速的处理,使用MQ作为其底层消息队列。
7.本地模式。Storm有一个“本地模式”,可以在处理过程中完全模拟Storm集群。这让你可以快速进行开发和单元测试。


在消耗资源相同的情况下,一般来说storm的延时低于mapreduce。但是吞吐也低于mapreduce。storm是典型的流计算系统,mapreduce是典型的批处理系统。下面对流计算和批处理系统流程

这个个数据处理流程来说大致可以分三个阶段:
1. 数据采集与准备
2. 数据计算(涉及计算中的中间存储), 题主中的“那些方面决定”应该主要是指这个阶段处理方式。
3. 数据结果展现(反馈)

1)数据采集阶段,目前典型的处理处理策略:数据的产生系统一般出自页面打点和解析DB的log,流计算将数据采集中消息队列(比如kafaka,metaQ,timetunle)等。批处理系统一般将数据采集进分布式文件系统(比如HDFS),当然也有使用消息队列的。我们暂且把消息队列和文件系统称为预处理存储。二者在延时和吞吐上没太大区别,接下来从这个预处理存储进入到数据计算阶段有很大的区别,流计算一般在实时的读取消息队列进入流计算系统(storm)的数据进行运算,批处理一系统一般会攒一大批后批量导入到计算系统(hadoop),这里就有了延时的区别。

2)数据计算阶段,流计算系统(storm)的延时低主要有一下几个方面(针对题主的问题)
A: storm 进程是常驻的,有数据就可以进行实时的处理
mapreduce 数据攒一批后由作业管理系统启动任务,Jobtracker计算任务分配,tasktacker启动相关的运算进程
B: stom每个计算单元之间数据之间通过网络(zeromq)直接传输。
mapreduce map任务运算的结果要写入到HDFS,在于reduce任务通过网络拖过去运算。相对来说多了磁盘读写,比较慢
C: 对于复杂运算
storm的运算模型直接支持DAG(有向无环图)
mapreduce 需要肯多个MR过程组成,有些map操作没有意义的

3)数据结果展现
流计算一般运算结果直接反馈到最终结果集中(展示页面,数据库,搜索引擎的索引)。而mapreduce一般需要整个运算结束后将结果批量导入到结果集中。

实际流计算和批处理系统没有本质的区别,像storm的trident也有批概念,而mapreduce可以将每次运算的数据集缩小(比如几分钟启动一次),facebook的puma就是基于hadoop做的流计算系统。

二、高性能并行计算引擎Storm和Spark比较

Spark基于这样的理念,当数据庞大时,把计算过程传递给数据要比把数据传递给计算过程要更富效率。每个节点存储(或缓存)它的数据集,然后任务被提交给节点。

所以这是把过程传递给数据。这和Hadoop map/reduce非常相似,除了积极使用内存来避免I/O操作,以使得迭代算法(前一步计算输出是下一步计算的输入)性能更高。

Shark只是一个基于Spark的查询引擎(支持ad-hoc临时性的分析查询)

而Storm的架构和Spark截然相反。Storm是一个分布式流计算引擎。每个节点实现一个基本的计算过程,而数据项在互相连接的网络节点中流进流出。和Spark相反,这个是把数据传递给过程。

两个框架都用于处理大量数据的并行计算。

Storm在动态处理大量生成的“小数据块”上要更好(比如在Twitter数据流上实时计算一些汇聚功能或分析)。

Spark工作于现有的数据全集(如Hadoop数据)已经被导入Spark集群,Spark基于in-memory管理可以进行快讯扫描,并最小化迭代算法的全局I/O操作。

不过Spark流模块(Streaming Module)倒是和Storm相类似(都是流计算引擎),尽管并非完全一样。

Spark流模块先汇聚批量数据然后进行数据块分发(视作不可变数据进行处理),而Storm是只要接收到数据就实时处理并分发。

不确定哪种方式在数据吞吐量上要具优势,不过Storm计算时间延迟要小。

总结下,Spark和Storm设计相反,而Spark Steaming才和Storm类似,前者有数据平滑窗口(sliding window),而后者需要自己去维护这个窗口

标签:计算,Hadoop,hadoop,Storm,storm,Spark,数据
From: https://blog.51cto.com/u_16081664/6224223

相关文章

  • 在CentOS上安装和配置Spark Standalone
    1.确认Java已安装在CentOS上运行以下命令以确认Java是否已安装:java-version如果Java未安装,请按照以下步骤进行安装:sudoyuminstalljava-1.8.0-openjdk-develx 修改/etc/profile文件,末尾添加exportJAVA_HOME=/usr/local/src/jdk1.8.0_291exportJRE_HOME=${JAVA_......
  • pyspark list[dict]转pyspark df
    数据处理把list嵌套字段转成pysparkdataframe #coding=utf-8frompyspark.sqlimportSparkSessionfrompyspark.sql.typesimport*importpandasaspdfrompyspark.sqlimportRowclassSparkContext:def__init__(self,name="cleaner"):self.s......
  • Hive On Spark调优
    第1章集群环境概述1.1集群配置概述本课程所用集群由5台节点构成其中2台为master节点:用于部署HDFS的NameNodeYarn的ResourceManager另外3台为worker节点,用于部署HDFS的DataNode、Yarn的NodeManager等角色。Master节点配置为16核CPU、64G内存。(两台,消除单点故障)Worker节......
  • Hadoop操作
    基本命令启动Hadoopstart-dfs.sh确保ssh服务打开了,否则启动不成功打开ssh服务:sudo/usr/sbin/sshd创建文件夹hadoopfs-mkdir路径forexample!hadoopfs-mkdir/HomeWork就会在根目录创建一个HomeWork文件夹 上传文件hadoopfs-put文件名服务器端文件夹名For......
  • WebStorm 2023.1 vue文件标签中变量无法识别 Unresolved variable or type
    从老版本WebStorm升级到 WebStorm2023.1之后,打开项目莫名爆红 可能是查询的不对,很多博客指明是依赖的问题,实际修改无效问题出在文件类型指向不对修改为: 问题解决 ......
  • HarmonyOS Hi3518系列 环境篇①——HiSpark_IPC_DIY摄像头开箱组装
    文章目录一、硬件介绍二、组装一、硬件介绍本专栏的所有开发都基于硬件润和HiSpark_IPC_DIY摄像头(Hi3518E)开发板套件,二、组装按照说明书进行组装,挺简单的,不过中间也装反过一次。组装后的成品多角度拍了几张照片,如有正在组装的同学看到可以多对照着看。......
  • 【汇智学堂】-Hadoop分布式集群安装验证-3(检查YARN)
    在HadoopMaster上启动Firefox浏览器,输入http://master:18088/,检查YARN是否正常,如下图则为正常。......
  • 【汇智学堂】-Hadoop分布式集群安装验证-2(WEB UI查看)
    在HadoopMaster上启动Firefox浏览器,输入http://master:50070/,检查NameNode和DataNode是否正常,如下图则为正常。......
  • phpStorm自定义快捷键,输出代码块,模板
    在开发过程中经常需要打印数据调试,var_dump()或print_r都没办法直观的查看数据,我一般用如下代码打印数据,但是每次手动输入又麻烦,所以设置一个快捷键就能输出一下代码,岂不是一劳永逸:1.进入设置对话框:File->Setting2.接下自定义快捷键:按一下步骤操作完,点击"ok"键![在这......
  • 下载Apache软件基金的软件和项目(Hadoop相关组件)
    一、下载Hadoop相关组件,可以到Apache软件基金的资源目录:Apache分发目录地址:https://dlcdn.apache.org/   二、下载软件方法一:在页面中找到需要下载的软件目录,点击进去,选择对应的版本就可以直接下载。方法二:在上面的地址栏中直接加上对应的组件名称,进入后选择对应的版......