给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
一天一共就有五个状态,
- 没有操作 (其实我们也可以不设置这个状态)
- 第一次持有股票
- 第一次不持有股票
- 第二次持有股票
- 第二次不持有股票
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
达到dp[i][1]状态,有两个具体操作:
- 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?
一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
同理dp[i][2]也有两个操作:
- 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
class Solution { public int maxProfit(int[] prices) { int len = prices.length; if (prices.length == 0) return 0; //0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出 int[][] dp = new int[len][5]; dp[0][1] = -prices[0]; // 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润 dp[0][3] = -prices[0]; for (int i = 1; i < len; i++) { dp[i][1] = Math.max(dp[i - 1][1], -prices[i]); dp[i][2] = Math.max(dp[i - 1][2], dp[i][1] + prices[i]); dp[i][3] = Math.max(dp[i - 1][3], dp[i][2] - prices[i]); dp[i][4] = Math.max(dp[i - 1][4], dp[i][3] + prices[i]); } return dp[len - 1][4]; } }
给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
第0天做第一次买入的操作,dp[0][1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
第二次卖出初始化dp[0][4] = 0;
所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]
class Solution { public int maxProfit(int k, int[] prices) { int len = prices.length; int[][] dp = new int[len][k*2 + 1]; // dp数组的初始化, 与版本一同理 for (int i = 1; i < k*2; i += 2) { dp[0][i] = -prices[0]; } for (int i = 1; i < len; i++) { for (int j = 0; j < k*2 - 1; j += 2) { dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]); dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]); } } return dp[len - 1][k*2]; } }
标签:int,max,50,len,123,买入,prices,III,dp From: https://www.cnblogs.com/libertylhy/p/17332649.html