首页 > 其他分享 >Seaborn第三章:带有误差范围的时间序列图

Seaborn第三章:带有误差范围的时间序列图

时间:2022-09-21 20:24:44浏览次数:88  
标签:第三章 Seaborn May flights 序列图 sns lineplot data example

目录

案例

学习网址:https://seaborn.pydata.org/examples/errorband_lineplots.html

import seaborn as sns
import pandas as pd
sns.set_theme(style="darkgrid")

# 导入数据
fmri = pd.read_csv("../../seaborn-data-master/fmri.csv")

# 查看数据
fmri.head()
subject timepoint event region signal
0 s13 18 stim parietal -0.017552
1 s5 14 stim parietal -0.080883
2 s12 18 stim parietal -0.081033
3 s11 18 stim parietal -0.046134
4 s10 18 stim parietal -0.037970
# 画有误差错误带的时序图
sns.lineplot(
    x = "timepoint", y = 'signal',
    hue = 'region', style = 'event',
    data = fmri
)

sns.lineplot() 的案例

example 1

# 导入数据
import pandas as pd
import seaborn as sns
flights = pd.read_csv("../../seaborn-data-master/flights.csv") # 10年中
flights.head()
year month passengers
0 1949 January
1 1949 February
2 1949 March
3 1949 April
4 1949 May
may_flights = flights.query("month == 'May'")
# may_flights = flights.loc[flights["month"] == 'May'] 也行
print(may_flights)
sns.lineplot(data = may_flights, x = 'year', y = 'passengers')
[out]:
       year month  passengers
  4    1949   May         121
  16   1950   May         125
  28   1951   May         172
  40   1952   May         183
  52   1953   May         229
  64   1954   May         234
  76   1955   May         270
  88   1956   May         318
  100  1957   May         355
  112  1958   May         363
  124  1959   May         420
  136  1960   May         472

example 2

换一种形式处理数据

flights_wide = flights.pivot("year", "month", "passengers")
'''
    参数解读:
        year : 指定每一行的输出内容
        month : 指定每一列的输出内容
        passengers : 指定输出的内容
'''
flights_wide.head()
month April August December February January July June March May November October September
year
1949 129 148 118 118 112 148 135 132 121 104 119 136
1950 135 170 140 126 115 170 149 141 125 114 133 158
1951 163 199 166 150 145 199 178 178 172 146 162 184
1952 181 242 194 180 171 230 218 193 183 172 191 209
1953 235 272 201 196 196 264 243 236 229 180 211 237
sns.lineplot(data = flights_wide['May'])

example 3

## 可以输出多列的线型图
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 6)) # 为了让图例不覆盖曲线
sns.lineplot(data = flights_wide)
plt.legend(loc='upper left') # 设置图例的位置

example 4

# 绘制每年的平均值以及95%的置信区间
sns.lineplot(data = flights, x = 'year', y = 'passengers')

example 5

# 可以对不同分组应用不同的颜色:hue
sns.lineplot(data = flights, x = 'year', y = 'passengers', hue = 'month') # 用不同的颜色区分不同的月份

example 6

# 可以通过调节 style 参数更改线条的类型
plt.figure(figsize=(8,6))
sns.lineplot(data = flights, x = 'year', y = 'passengers', hue = 'month', style = 'month')
plt.legend(loc='upper left')

可以发现颜色图例和example3一致(除了月份顺序)

example 7

sns.lineplot(data = flights, x = 'passengers', y = 'year', orient = 'y')
# xy轴互换,此时 1个 y 对应多个 x ,如果直接画的画有点类似于 迪利克雷函数 那种 图像形式,
# 而加上 orient = 'y' 就能得到每一年的平均值,并画出95%的置信区间

注:使用 orient 参数前需要将seaborn版本升级到 0.12.0

# 查看 seaborn 版本
sns.__version__
'0.12.0'

example 8

## 加载数据
fmri = pd.read_csv("../../seaborn-data-master/fmri.csv")
fmri.head()
subject timepoint event region signal
0 s13 18 stim parietal
1 s5 14 stim parietal
2 s12 18 stim parietal
3 s11 18 stim parietal
4 s10 18 stim parietal
sns.lineplot(data = fmri, x = 'timepoint', y = 'signal', hue = 'event') # 以 event 为依据分类

example 9

# 接着 example 8 的例子,用不同的色调区分 region,用不同的线条类型区分 event
sns.lineplot(data=fmri, x='timepoint', y='signal', hue='region', style='event')

example 10

# 可以用 markers = True 进行描点
sns.lineplot(
    data=fmri,
    x='timepoint',
    y='signal',
    hue='event',
    style='event',
    markers=True, # 不同类别线条上的描点进行区别
    dashes=False # 不同类别线条的形状不进行区别
)

example 11

# 这次利用误差线而不是误差宽度
sns.lineplot(
    data = fmri,
    x='timepoint',
    y='signal',
    hue='event',
    err_style='bars',
    errorbar=('se',2) # se代表样本标准误差
)

# errorbar可选参数有 'ci' 'se' 'sd' 'pi'
# ci 是显著性检验的补充,反映的是真实的均值或者均值区别的范围,即置信区间
# se 标准误差(Standard Error)
# sd 样本标准差

example 12

# 使用 units 参数进行分组
sns.lineplot(
    data = fmri.query("region == 'frontal'"),
    x='timepoint',
    y='signal',
    hue='event',
    units='subject',
    estimator=None, #用于在同一水平x上聚合y变量的多个观测值的方法,如果是 None,将绘制所有观测值
    # lw=1
)

example 13

# 加载新的数据集
dots = pd.read_csv("../../seaborn-data-master/dots.csv").query("align == 'dots'")
dots.head()
align choice time coherence firing_rate
0 dots T1 -80 0.0
1 dots T1 -80 3.2
2 dots T1 -80 6.4
3 dots T1 -80 12.8
4 dots T1 -80 25.6
# 对不同的coherence(数字变量)调不同的颜色,以 choice 为依据划分线条的类型
import matplotlib.pyplot as plt
plt.figure(figsize = (8,6))
sns.lineplot(
    data = dots,
    x = 'time',
    y = 'firing_rate',
    hue = 'coherence',
    style = 'choice'
)
plt.legend(loc='upper left')

example 14

# 可以以python列表或字典的形式传递特定的颜色
import matplotlib.pyplot as plt
plt.figure(figsize = (8,6))
palette = sns.color_palette('mako_r', 6)
sns.lineplot(
    data = dots,
    x = 'time',
    y = 'firing_rate',
    hue = 'coherence',
    style = 'choice',
    palette = palette
)
plt.legend(loc='upper left')

example 15

# 不同 coherence 类别可以用不同粗细的线条画出
plt.figure(figsize=(8,6))
sns.lineplot(
    data = dots,
    x = 'time',
    y = 'firing_rate',
    size = 'coherence',
    hue = 'choice',
    legend = 'full'
)
plt.legend(loc='upper left')

# 可以手动调节线条粗细的范围区间
plt.figure(figsize=(8,6))
sns.lineplot(
    data = dots,
    x = 'time',
    y = 'firing_rate',
    size = 'coherence',
    hue = 'choice',
    sizes = (.25, 2.5) #定义最小值和最大值
)
plt.legend(loc='upper left')

example 16

# 默认情况下,绘图时按 x 排序,若 调节 sort = False,则绘图时按数据集中的顺序绘制
import numpy as np
x, y = np.random.normal(size = (2, 5000)).cumsum(axis = 1)
sns.lineplot(x=x, y=y, lw=1)

sns.lineplot(x=x, y=y, sort=False, lw=1)

example 17

# 使用 replot() 分组绘图,以参数 col 进行分组
sns.relplot(
    data = fmri,
    x = 'timepoint',
    y = 'signal',
    col = 'region',
    hue = 'event',
    style = 'event',
    kind = 'line'
)

标签:第三章,Seaborn,May,flights,序列图,sns,lineplot,data,example
From: https://www.cnblogs.com/hznudmh/p/16717000.html

相关文章

  • 第三章实例实战
                                                       ......
  • 第三章
    1.print("今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问几何?\n")#输入一个数number=int(input("请输入您认为符合条件的数:"))#判断ifnumber%3==2andnumb......
  • seaborn 第二章:不同形式的散点图
    二、散点图importseabornassnsimportmatplotlib.pyplotaspltsns.set_theme(style='whitegrid')#加载diamonds数据集diamonds=sns.load_dataset('diamon......
  • 在 Seaborn 中可视化条形图
    在Seaborn中可视化条形图摄影者米凯尔·布隆维斯特让我们讨论在Seaborn中创建条形图的不同可视化技术。条形图是另一种在数据分析中经常使用的绘图类型。Seabor......
  • 第三章 Ansible中ad-hoc入门
    一、概述Ansibleadhoc命令使用/usr/bin/ansible命令行工具在一个或多个受管节点上自动执行单个任务。临时命令既快速又简单,但它们不可重复使用,执行完即结束,并不会保存......
  • 第三章:流程控制语句
      print("今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问几何?\n")number=int(input("请输入您认为符合条件的数:"))ifnumber%3==2andnumber%5==3......
  • 读《概率机器人》第三章
    § 1卡尔曼滤波KF概述自己总结:基础的卡尔曼滤波完成了这样的一件事:在一系列线性的前提条件下,在状态转移模型具有正态分布、测量模型具有正态分布的情况下,给出了一个满......
  • java锁:第三章:自旋锁
    自旋锁是什么?更多内容请见原文,原文转载自:https://blog.csdn.net/weixin_44519496/article/details/120323324......
  • 第三章-Blazor 应用程序的组件和结构
    什么是Blazor组件?简单来说,Blazor中的每个razor文件都是一个组件。就是这么简单!Blazor中的razor文件包含标记,并且在@code部分中有代码。我们在MyFirstBlazor......
  • c# 第三章 一个简单的程序
    3.1一个简单的c#程序 SimpleProgram: usingSystem;//using和include似乎有点类似,而System就相当于被引入的库namespaceSimple//似乎有点像c++的usingnames......