对于数据的解读,每个人都有不同的方式。如果我们要简单的总结,数据分析的方法,具体有以下几种:
1)确定数据的准确性
这里包含了选择数据维度的合理性、数据统计的准确性。如果数据维度选择不合理、数据统计结果不精确,我们可能是无法得出正确的分析结果的。这是基础。
2)明确影响数据的因素
一个数据,会收到多种因素的影响,这些因素有内部的,有外部的,运营人员应当尽可能多的了解所有层面的影响因素,以利于我们对于数据的解读是在一个相对正确的范围内。
3)重视长期的数据监测
在运营数据分析中,经常会使用环比和同比方式来对比数据。简单的说,环比是本日与前一日的对比、本月与上月的对比、本季度与上季度的对比;同比是今年当日与去年当日的对比、今年当月与去年当月的对比、今年当季度与去年当季度的对比。环比帮我们看短期的数据波动,而同比帮我们了解大环境下的数据波动。
4)保持客观的视角
数据分析的过程中,客观非常重要,不以物喜不以己悲,做了错误的操作,带来了不利的影响要承认,获得了超出意料的成果要心平气和,切忌挑选有利于自身的结论。这是职业道德的问题,也是职业发展中非常常见的问题。
5)注意剔除干扰项
实际的工作中,我们会碰到很多问题,这些问题是干扰项,例如,在一个相对平稳的曲线中,突然出现了一个点上的强烈波动,这时候我们需要全面的了解个波动产生的原因,如果无法确认原因,就剔除这个波动,否则我们很难去获得一个正确的结论。