首页 > 其他分享 >Seata:连接数据与应用

Seata:连接数据与应用

时间:2023-04-17 12:35:26浏览次数:37  
标签:事务 Seata TXC 开源 应用 一致性 连接 分布式

作者:季敏(清铭)Seata 开源社区创始人,分布式事务团队负责人。

本文主要介绍分布式事务从内部到商业化和开源的演进历程,Seata 社区当前进展和未来规划。

Seata 是一款开源的分布式事务解决方案,旨在为现代化微服务架构下的分布式事务提供解决方案。Seata 提供了完整的分布式事务解决方案,包括 AT、TCC、Saga 和 XA 事务模式,可支持多种编程语言和数据存储方案。Seata 还提供了简便易用的 API,以及丰富的文档和示例,方便企业在应用 Seata 时进行快速开发和部署。

Seata 的优势在于具有高可用性、高性能、高扩展性等特点,同时在进行横向扩展时也无需做额外的复杂操作。 目前 Seata 已在阿里云上几千家客户业务系统中使用,其可靠性得到了业内各大厂商的认可和应用。

作为一个开源项目,Seata 的社区也在不断扩大,现已成为开发者交流、分享和学习的重要平台,也得到了越来越多企业的支持和关注。

今天我主要针对以下三个小议题对 Seata 进行分享:

  • 从 TXC/GTS 到 Seata
  • Seata 社区最新进展
  • Seata 社区未来规划

从 TXC/GTS 到 Seata

分布式事务的缘起

Seata:连接数据与应用_seata

Seata 在阿里内部的产品代号叫 TXC(taobao transaction constructor),这个名字有非常浓厚的组织架构色彩。TXC 起源于阿里五彩石项目,五彩石是上古神话中女娲补天所用的石子,项目名喻意为打破关键技术壁垒,象征着阿里在从单体架构向分布式架构的演进过程中的重要里程碑。在这个项目的过程中演进出一批划时代的互联网中间件,包括我们常说的三大件:

  • HSF 服务调用框架,解决单体应用到服务化后的服务通信调用问题。
  • TDDL 分库分表框架,解决规模化后单库存储容量和连接数问题。
  • MetaQ 消息框架,解决异步调用问题。

三大件的诞生满足了微服务化业务开发的基本需求,但是微服务化后的数据一致性问题并未得到妥善解决,缺少统一的解决方案。应用微服务化后出现数据一致性问题概率远大于单体应用,从进程内调用到网络调用这种复杂的环境加剧了异常场景的产生,服务跳数的增多使得在出现业务处理异常时无法协同上下游服务同时进行数据回滚。TXC 的诞生正是为了解决应用架构层数据一致性的痛点问题,TXC 核心要解决的数据一致性场景包括:

  • 跨服务的一致性。应对系统异常如调用超时和业务异常时协调上下游服务节点回滚。
  • 分库分表的数据一致性。应对业务层逻辑 SQL 操作的数据在不同数据分片上,保证其分库分表操作的内部事务。
  • 消息发送的数据一致性。应对数据操作和消息发送成功的不一致性问题。

为了克服以上通用场景遇到的问题,TXC 与三大件做了无缝集成。业务使用三大件开发时,完全感知不到背后 TXC 的存在,业务不需要考虑数据一致性的设计问题,数据一致性保证交给了框架托管,业务更加聚焦于业务本身的开发,极大的提升了开发的效率。

Seata:连接数据与应用_seata_02

TXC 已在阿里集团内部广泛应用多年,经过双 11 等大型活动的洪荒流量洗礼,TXC 极大提高了业务的开发效率,保证了数据的正确性,消除了数据不一致导致的资损和商誉问题。随着架构的不断演进,标准的三节点集群已可以承载接近 10W TPS 的峰值和毫秒级事务处理。在可用性和性能方面都达到了 4 个 9 的 SLA 保证,即使在无值守状态下也能保证全年无故障。

分布式事务的演进

新事物的诞生总是会伴随着质疑的声音。中间件层来保证数据一致性到底可靠吗?TXC 最初的诞生只是一种模糊的理论,缺乏理论模型和工程实践。在我们进行 MVP(最小可行产品)模型测试并推广业务上线后,经常出现故障,常常需要在深夜起床处理问题,睡觉时要佩戴手环来应对紧急响应,这也是我接管这个团队在技术上过的最痛苦的几年。

Seata:连接数据与应用_阿里云_03

随后,我们进行了广泛的讨论和系统梳理。我们首先需要定义一致性问题,我们是要像 RAFT 一样实现多数共识一致性,还是要像 Google Spanner 一样解决数据库一致性问题,还是其他方式?从应用节点自上而下的分层结构来看,主要包括开发框架、服务调用框架、数据中间件、数据库 Driver 和数据库。我们需要决定在哪一层解决数据一致性问题。我们比较了解决不同层次数据一致性问题所面临的一致性要求、通用性、实现复杂度和业务接入成本。最后,我们权衡利弊,把实现复杂度留给我们,作为一个一致性组件,我们需要确保较高的一致性,但又不能锁定到具体数据库的实现上,确保场景的通用性和业务接入成本足够低以便更容易实现业务,这也是 TXC 最初采用 AT 模式的原因。

分布式事务它不仅仅是一个框架,它是一个体系。 我们在理论上定义了一致性问题,概念上抽象出了模式、角色、动作和隔离性等。从工程实践的角度,我们定义了编程模型,包括低侵入的注解、简单的方法模板和灵活的 API,定义了事务的基础能力和增强能力(例如如何以低成本支持大量活动),以及运维、安全、性能、可观测性和高可用等方面的能力。

Seata:连接数据与应用_数据一致性_04

分布式事务解决了哪些问题呢?一个经典且具有体感的例子就是转账场景。转账过程包括减去余额和增加余额两个步骤,我们如何保证操作的原子性?在没有任何干预的情况下,这两个步骤可能会遇到各种问题,例如 B 账户已销户或出现服务调用超时等情况。

超时问题一直是分布式应用中比较难解决的问题,我们无法准确知晓 B 服务是否执行以及其执行顺序。从数据的角度来看,这意味着 B 账户的钱未必会被成功加起来。在服务化改造之后,每个节点仅获知部分信息,而事务本身需要全局协调所有节点,因此需要一个拥有上帝视角、能够获取全部信息的中心化角色,这个角色就是 TC(transaction coordinator),它用于全局协调事务的状态。TM(Transaction Manager)则是驱动事务生成提议的角色。

但是,即使上帝也有打瞌睡的时候,他的判断也并不总是正确的,因此需要一个 RM(resource manager)角色作为灵魂的代表来验证事务的真实性。这就是 TXC 最基本的哲学模型。我们从方法论上验证了它的数据一致性是非常完备的,当然,我们的认知是有边界的。也许未来会证明我们是火鸡工程师,但在当前情况下,它的模型已经足以解决大部分现有问题。

Seata:连接数据与应用_seata_05

经过多年的架构演进,从事务的单链路耗时角度来看,TXC 在事务开始时的处理平均时间约为 0.2 毫秒,分支注册的平均时间约为 0.4 毫秒,整个事务额外的耗时在毫秒级别之内。这也是我们推算出的极限理论值。在吞吐量方面,单节点的 TPS 达到 3 万次/秒,标准集群的 TPS 接近 10 万次/秒。

Seata 开源

为什么要做开源?这是很多人问过我的问题。2017 年我们做了商业化的 GTS(Global Transaction Service)产品产品在阿里云上售卖,有公有云和专有云两种形态。此时集团内发展的顺利,但是在我们商业化的过程中并不顺利,我们遇到了各种各样的问题,问题总结起来主要包括两类:一是开发者对于分布式事务的理论相当匮乏,大多数人连本地事务都没搞明白是怎么回事更何况是分布式事务。二是产品成熟度上存在问题,经常遇到稀奇古怪的场景问题,导致了支持交付成本的急剧上升,研发变成了售后客服。

我们反思为什么遇到如此多的问题,这里主要的问题是在阿里集团内部是统一语言栈和统一技术栈的,我们对特定场景的打磨是非常成熟的,服务阿里一家公司和服务云上成千上万家企业有本质的区别,这也启示我们产品的场景生态做的不够好。在 GitHub 80% 以上的开源软件是基础软件,基础软件首要解决的是场景通用性问题,因此它不能被有一家企业 Lock In,比如像 Linux,它有非常多的社区分发版本。因此,为了让我们的产品变得更好,我们选择了开源,与开发者们共建、普及更多的企业用户。

Seata:连接数据与应用_阿里云_06

阿里的开源经历了三个主要阶段。第一个阶段是 Dubbo 所处的阶段,开发者用爱发电,Dubbo 开源了有十几年的时间,时间充分证明了 Dubbo 是非常优秀的开源软件,它的微内核插件化的扩展性设计也是我最初开源 Seata 的重要参考。做软件设计的时候我们要思考扩展性和性能权衡起来哪个会更重要一些,我们到底是要做一个三年的设计,五年的设计亦或是满足业务发展的十年设计。我们在做 0-1 服务调用问题的解决方案的同时,能否预测到 1-100 规模化后的治理问题。

第二个阶段是开源和商业化的闭环,商业化反哺于开源社区,促进了开源社区的发展。我认为云厂商更容易做好开源的原因如下:

首先,云是一个规模化的经济,必然要建立在稳定成熟的内核基础上,在上面去包装其产品化能力包括高可用、免运维和弹性能力。不稳定的内核必然导致过高的交付支持成本,研发团队的支持答疑穿透过高,过高的交付成本无法实现大规模的复制,穿透率过高无法使产品快速的演进迭代。

其次,商业产品是更懂业务需求的。我们内部团队做技术的经常是站在研发的视角 YY 需求,做出来的东西没有人使用,也就不会形成价值的转换。商业化收集到的都是真实的业务需求,因此,它的开源内核也必须会朝着这个方向演进。如果不朝着这个方向去演进必然导致两边架构上的分裂,增加团队的维护成本。

最后,开源和商业化闭环,能促进双方更好的发展。如果开源内核经常出现各种问题,你是否愿意相信的它的商业化产品是足够优秀的。

第三个阶段是体系化和标准化。首先,体系化是开源解决方案的基础。阿里的开源项目大多是基于内部电商场景的实践而诞生的。例如 Higress,它用于打通蚂蚁集团的网关;Nacos 承载着服务的百万实例和千万连接;Sentinel 提供大促时的降级和限流等高可用性能力;而 Seata 负责保障交易数据的一致性。这套体系化的开源解决方案是基于阿里电商生态的最佳实践而设计的。其次,标准化是另一个重要的特点。以 OpenSergo 为例,它既是一个标准,又是一个实现。在过去几年里,国内开源项目数量呈爆发式增长。然而,各个开源产品的能力差异很大,彼此集成时会遇到许多兼容性问题。因此,像 OpenSergo 这样的开源项目能够定义一些标准化的能力和接口,并提供一些实现,这将为整个开源生态系统的发展提供极大的帮助。

Seata 社区最新进展

Seata 社区简介

Seata:连接数据与应用_数据一致性_07

目前,Seata 已经开源了 4 种事务模式,包括 AT、TCC、Saga 和 XA,并在积极探索其他可行的事务解决方案。 Seata 已经与 10 多个主流的 RPC 框架和关系数据库进行了集成,同时与 20 多个社区存在集成和被集成的关系。此外,我们还在多语言体系上探索除 Java 之外的语言,如 Golang、PHP、Python 和 JS。Seata 已经被几千家客户应用到业务系统中。

Seata 的应用已经变得越来越成熟,在金融业务场景中信银行和光大银行与社区做了很好的合作,并成功将其纳入到核心账务系统中。在金融场景对微服务体系的落地是非常严苛的,这也标志着 Seata 的内核成熟度迈上了一个新台阶。

Seata 扩展生态

Seata:连接数据与应用_分布式事务_08

Seata 采用了微内核和插件化的设计,它在 API、注册配置中心、存储模式、锁控制、SQL 解析器、负载均衡、传输、协议编解码、可观察性等方面暴露了丰富的扩展点。这使得业务可以方便地进行灵活的扩展和技术组件的选择。

Seata 应用案例

Seata:连接数据与应用_阿里云_09

案例1:中航信航旅纵横项目
中航信航旅纵横项目在 Seata 0.2 版本中引入 Seata 解决机票和优惠券业务的数据一致性问题,大大提高了开发效率、减少了数据不一致造成的资损并提升了用户交互体验。

案例2:滴滴出行二轮车事业部
滴滴出行二轮车事业部在 Seata 0.6.1 版本中引入 Seata,解决了小蓝单车、电动车、资产等业务流程的数据一致性问题,优化了用户使用体验并减少了资产的损失。案例3:美团基础架构
美团基础架构团队基于开源的 Seata 项目开发了内部分布式事务解决方案 Swan,被用于解决美团内部各业务的分布式事务问题。

案例4:盒马小镇
盒马小镇在游戏互动中使用 Seata 控制偷花的流程,开发周期大大缩短,从 20 天缩短到了 5 天,有效降低了开发成本。

Seata 事务模式的演进

Seata:连接数据与应用_阿里云_10

Seata 当前进展

  • 支持 Oracle和 Postgresql 多主键。
  • 支持 Dubbo3
  • 支持 Spring Boot3
  • 支持 JDK 17
  • 支持 ARM64 镜像
  • 支持多注册模型
  • 扩展了多种 SQL 语法
  • 支持 GraalVM Native Image
  • 支持 Redis lua 存储模式

Seata 2.x 发展规划

Seata:连接数据与应用_阿里云_11

主要包括下面几个方面:

  • 存储/协议/特性 ****存储模式上探索存算不分离的 Raft 集群模式;更好的体验,统一当前 4 种事务模式的 API;兼容 GTS 协议;支持 Saga 注解;支持分布式锁的控制;支持以数据视角的洞察和治理。
  • 生态 ****融合支持更多的数据库,更多的服务框架,同时探索国产化信创生态的支持;支持 MQ 生态;进一步完善 APM 的支持。
  • 解决方案 ****解决方案上除了支持微服务生态探索多云方案;更贴近云原生的解决方案;增加安全和流量防护能力;实现架构上核心组件的自闭环收敛。
  • 多语言生态 ****多语言生态中 Java 最成熟,其他已支持的编程语言继续完善,同时探索与语言无关的 Transaction Mesh 方案。
  • 研发效能/体验 ****提升测试的覆盖率,优先保证质量、兼容性和稳定性;重构官网文档结构,提升文档搜索的命中率;在体验上简化运维部署,实现一键安装和配置元数据简化;控制台支持事务控制和在线分析能力。

一句话总结 2.x 的规划:更大的场景,更大的生态,从可用到好用。

标签:事务,Seata,TXC,开源,应用,一致性,连接,分布式
From: https://blog.51cto.com/u_13778063/6194952

相关文章

  • AI烟火识别在防火风险监测视频安防预警系统中的应用
    随着科技的不断发展,越来越多的领域开始应用AI技术,尤其是视频监控技术与AI智能检测技术的融合,开拓了智能安防监控新天地。AI视频智能分析系统平台,通过对场景中的监控视频图像进行智能识别与分析,可提供人脸、人体、车辆、烟火、物体、行为等识别、抓拍、比对、告警等服务,支持对场景中......
  • 优雅连接
    优雅连接什么是优雅关机?优雅关机就是服务端关机命令发出后不是立即关机,而是等待当前还在处理的请求全部处理完毕后再退出程序,是一种对客户端友好的关机方式。而执行Ctrl+C关闭服务端时,会强制结束进程导致正在访问的请求出现问题。如何实现优雅关机?Go1.8版本之后,http.Server......
  • 人工智能技术在游戏领域的应用:智能化游戏是否能够提高游戏体验?
    ​ 人工智能技术在游戏领域的应用已经成为了游戏行业的一个热门话题。智能化游戏是指通过人工智能技术来提高游戏的体验,使游戏更加智能化、更加有趣、更加具有挑战性。那么,智能化游戏是否能够提高游戏体验呢?首先,智能化游戏可以提高游戏的趣味性。通过人工智能技术,游戏可以更加智......
  • 从零开始USRP 04 连接硬件的时候的一些教训
    在连接硬件的时候出现了一堆问题,大概记录一下。我用的代码是:https://www.cnblogs.com/loveandninenine/p/17286194.html然而,连接到硬件上,收端收不到,发射端发不出去,哈哈哈哈哈哈呕了。先说一下我的硬件连接。我一共用了三台USRP,其中A设备负责发射,BC设备负责接收。BC之间做了同......
  • Docker容器应用场景分析
    Docker容器是一个开源的应用容器引擎,它能够自动执行重复性任务,例如搭建和配置开发环境,用户可以方便地创建和使用容器,还可以进行版本管理、复制、分享、修改。有很多初学云计算的同学不清楚Docker容器的使用方法以及应用场景,接下来就给大家简单分享一下云计算学习路线图素材课件:Doc......
  • 人工智能技术在金融领域的应用:智能投顾是否能够替代人类理财师?
    人工智能技术在金融领域的应用已经成为了一个热门话题。其中,智能投顾作为一种新兴的理财方式,备受关注。但是,智能投顾是否能够替代人类理财师呢?这是一个值得探讨的问题。首先,我们需要了解什么是智能投顾。智能投顾是一种基于人工智能技术的理财服务,它通过算法分析客户的风险偏好、......
  • Qt 连接 mysql 报错 QSqlDatabase: MYSQL driver not loaded
    参考: https://blog.csdn.net/o___GRoot/article/details/111320313 https://blog.csdn.net/sksukai/article/details/105344308 我的解决步骤:1.指定qmake qmake:couldnotexec‘/usr/lib/x86_64-linux-gnu/qt4/bin/qmake’:Nosuchfileordirectory需要修改如下......
  • Java Web应用设计中验证码的生成和应用方法
    在JavaWeb应用设计中验证码的设计是一个必不可少的环节,由于验证码技术具有随机性较强、简单的特点,能够在一定程度上阻止网络上的恶意访问,在互联网领域得到了广泛的应用,如防止破解密码、刷票、论坛灌水、刷页、注册等恶意操作。百度上对验证码的定义是:(CAPTCHA)“CompletelyAut......
  • Linux系统知识(十一)-Ubuntu使用TCP/UDP并限制最大连接数
    一、Ubuntu使用TCP1、使用TCP的命令:  /dev/[tcp|upd]/host/port;例如::cat</dev/tcp/127.0.0.1/222、查看当前监听的端口  -bash:connect:拒绝连接  -bash:/dev/[tcp|upd]/host/port:拒绝连接  例:-bash:connect:Connectionrefused-bash:/dev/tcp/127.......
  • 12.shell 函数应用
    1.什么是函数函数其实就是一堆命令的集合,用来完成一些特定的代码块。作用:便于代码的复用,跟脚本类似2.函数的基本概述#定义函数#第一种函数名(){  命令集合}#第二种function函数名{  命令集合}#示例  2.函数状态返回  3.状态返回案例 ......