一、实验目的
- 能够使用源码安装Mininet;
- 能够使用Mininet的可视化工具生成拓扑;
- 能够使用Mininet的命令行生成特定拓扑;
- 能够使用Mininet交互界面管理SDN拓扑;
- 能够使用Python脚本构建SDN拓扑。
二、实验环境
Ubuntu 20.04 Desktop amd64
三、实验要求
(一)基本要求
-
使用Mininet可视化工具,生成下图所示的拓扑,并保存拓扑文件名为学号.py。
-
使用Mininet的命令行生成如下拓扑:
a) 3台交换机,每个交换机连接1台主机,3台交换机连接成一条线。
b) 3台主机,每个主机都连接到同1台交换机上。 -
在2 b)的基础上,在Mininet交互界面上新增1台主机并且连接到交换机上,再测试新拓扑的连通性。
-
编辑基本要求第1步保存的Python脚本,添加如下网络性能限制,生成拓扑:
a) h1的cpu最高不超过50%;
b) h1和s1之间的链路带宽为10,延迟为5ms,最大队列大小为1000,损耗率50#!/usr/bin/env python from mininet.net import Mininet from mininet.node import Controller, RemoteController, OVSController from mininet.node import CPULimitedHost, Host, Node from mininet.node import OVSKernelSwitch, UserSwitch from mininet.node import IVSSwitch from mininet.cli import CLI from mininet.log import setLogLevel, info from mininet.link import TCLink, Intf from subprocess import call def myNetwork(): net = Mininet( topo=None, build=False, ipBase='10.0.0.0/8') info( '*** Adding controller\n' ) c0=net.addController(name='c0', controller=Controller, protocol='tcp', port=6633) info( '*** Add switches\n') s2 = net.addSwitch('s2', cls=OVSKernelSwitch) s1 = net.addSwitch('s1', cls=OVSKernelSwitch) info( '*** Add hosts\n') h1 = net.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None,cpu=0.5) h2 = net.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None) h4 = net.addHost('h4', cls=Host, ip='10.0.0.4', defaultRoute=None) h3 = net.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None) info( '*** Add links\n') net.addLink(h1, s1,bw=10,delay='5ms',max_queue_size=1000,loss=50) net.addLink(h2, s1) net.addLink(s1, s2) net.addLink(h3, s2) net.addLink(s2, h4) info( '*** Starting network\n') net.build() info( '*** Starting controllers\n') for controller in net.controllers: controller.start() info( '*** Starting switches\n') net.get('s2').start([c0]) net.get('s1').start([c0]) info( '*** Post configure switches and hosts\n') CLI(net) net.stop() if __name__ == '__main__': setLogLevel( 'info' ) myNetwork()
(二)进阶要求
编写Python脚本,生成如下数据中心网络拓扑,要求:
-
编写.py拓扑文件,命名为“学号_fattree.py”;
-
必须通过Mininet的custom参数载入上述文件,不得直接使用miniedit.py生成的.py文件;
-
设备名称必须和下图一致;
-
使用Python的循环功能实现,不得在代码中手工直接添加设备和链路。
-
#!/usr/bin/python #创建网络拓扑 """Custom topology example Adding the 'topos' dict with a key/value pair to generate our newly defined topology enables one to pass in '--topo=mytopo' from the command line. """ from mininet.topo import Topo from mininet.net import Mininet from mininet.node import RemoteController,CPULimitedHost from mininet.link import TCLink from mininet.util import dumpNodeConnections class MyTopo( Topo ): "Simple topology example." def __init__( self ): "Create custom topo." # Initialize topology Topo.__init__( self ) L1 = 2 L2 = L1 * 2 L3 = L2 * 2 a = [] b = [] c = [] # add core ovs for i in range( L1 ): sw = self.addSwitch( 'a{}'.format( i + 1 ) ) a.append( sw ) # add aggregation ovs for i in range( L2 ): sw = self.addSwitch( 'b{}'.format( L1 + i + 1 ) ) b.append( sw ) # add edge ovs for i in range( L3 ): sw = self.addSwitch( 'c{}'.format( L1 + L2 + i + 1 ) ) c.append( sw ) # add links between core and aggregation ovs for i in range( L1 ): sw1 = a[i] for sw2 in b[int(i/2)::int(L1/2)]: # self.addLink(sw2, sw1, bw=10, delay='5ms', loss=10, max_queue_size=1000, use_htb=True) self.addLink( sw2, sw1 ) # add links between aggregation and edge ovs for i in range( L2 ): for sw1 in b[i:i+2]: for sw2 in c[i*2:(i+2)*2]: self.addLink( sw2, sw1 ) #add hosts and its links with edge ovs count = 1 for sw1 in c: for i in range(2): host = self.addHost( 'h{}'.format( count ) ) self.addLink( sw1, host ) count += 1 topos = { 'mytopo': ( lambda: MyTopo() ) }
四、个人总结
本次实验是sdn的第一次实验,主要任务是搭建Mininet实验环境以及动手尝试通过不同的方式搭建简单的的网络拓扑结构,在第一次实验中遇到了不少的问题,有涉及到python版本的问题在默认python2的情况下,在mininet调出可视化的工具时出现在错误,后再错误提示下通过前面sdn的拓扑搭建的常见问题中知道是python3和python2的问题,后通过处理得到解决,以及在运行python文件时出现的问题后来也得到了解决,在实验中摸索。
标签:mininet,Mininet,拓扑,实践,self,import,SDN,net From: https://www.cnblogs.com/Hollowtao/p/16712789.html