首页 > 其他分享 >数据分析第十二章实践

数据分析第十二章实践

时间:2023-04-09 21:02:53浏览次数:36  
标签:数据分析 index word neg 第十二章 实践 content pos data

# 代码12-1 评论去重的代码

import pandas as pd
import re
import jieba.posseg as psg
import numpy as np


# 去重,去除完全重复的数据
reviews = pd.read_csv("C:/Users/Lenore/Desktop/data/reviews.csv")
reviews = reviews[['content', 'content_type']].drop_duplicates()
content = reviews['content']

# 代码12-2 数据清洗

# 去除去除英文、数字等
# 由于评论主要为京东美的电热水器的评论,因此去除这些词语
strinfo = re.compile('[0-9a-zA-Z]|京东|美的|电热水器|热水器|')
content = content.apply(lambda x: strinfo.sub('', x))

# 代码12-3 分词、词性标注、去除停用词代码

# 分词
worker = lambda s: [(x.word, x.flag) for x in psg.cut(s)] # 自定义简单分词函数
seg_word = content.apply(worker) 

# 将词语转为数据框形式,一列是词,一列是词语所在的句子ID,最后一列是词语在该句子的位置
n_word = seg_word.apply(lambda x: len(x))  # 每一评论中词的个数

n_content = [[x+1]*y for x,y in zip(list(seg_word.index), list(n_word))]
index_content = sum(n_content, [])  # 将嵌套的列表展开,作为词所在评论的id

seg_word = sum(seg_word, [])
word = [x[0] for x in seg_word]  # 词

nature = [x[1] for x in seg_word]  # 词性

content_type = [[x]*y for x,y in zip(list(reviews['content_type']), list(n_word))]
content_type = sum(content_type, [])  # 评论类型

result = pd.DataFrame({"index_content":index_content, 
                       "word":word,
                       "nature":nature,
                       "content_type":content_type}) 

# 删除标点符号
result = result[result['nature'] != 'x']  # x表示标点符号

# 删除停用词
stop_path = open("C:/Users/Lenore/Desktop/data/stoplist.txt", 'r',encoding='UTF-8')
stop = stop_path.readlines()
stop = [x.replace('\n', '') for x in stop]
word = list(set(word) - set(stop))
result = result[result['word'].isin(word)]

# 构造各词在对应评论的位置列
n_word = list(result.groupby(by = ['index_content'])['index_content'].count())
index_word = [list(np.arange(0, y)) for y in n_word]
index_word = sum(index_word, [])  # 表示词语在改评论的位置

# 合并评论id,评论中词的id,词,词性,评论类型
result['index_word'] = index_word

# 代码12-4 提取含有名词的评论

# 提取含有名词类的评论
ind = result[['n' in x for x in result['nature']]]['index_content'].unique()
result = result[[x in ind for x in result['index_content']]]

# 代码12-5 绘制词云

import matplotlib.pyplot as plt
from wordcloud import WordCloud

frequencies = result.groupby(by = ['word'])['word'].count()
frequencies = frequencies.sort_values(ascending = False)
backgroud_Image=plt.imread('C:/Users/Lenore/Desktop/data/pl.jpg')
wordcloud = WordCloud(font_path="C:/Windows/Fonts/STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
my_wordcloud = wordcloud.fit_words(frequencies)
plt.rcParams['font.sans-serif'] = 'SimHei' 
plt.title('词云_3042')
plt.imshow(my_wordcloud)
plt.axis('off') 
plt.show()

# 将结果写出
result.to_csv("C:/Users/Lenore/Desktop/data/word.csv", index = False, encoding = 'utf-8')
# 代码12-6 匹配情感词

import pandas as pd
import numpy as np
word = pd.read_csv("C:/Users/Lenore/Desktop/data/word.csv")

# 读入正面、负面情感评价词
pos_comment = pd.read_csv("C:/Users/Lenore/Desktop/data/正面评价词语(中文).txt", header=None,
                          encoding = 'utf-8', engine='python')
neg_comment = pd.read_csv("C:/Users/Lenore/Desktop/data/负面评价词语(中文).txt", header=None,
                          encoding = 'utf-8', engine='python')
pos_emotion = pd.read_csv("C:/Users/Lenore/Desktop/data/正面情感词语(中文).txt", header=None,
                          encoding = 'utf-8', engine='python')
neg_emotion = pd.read_csv("C:/Users/Lenore/Desktop/data/负面情感词语(中文).txt", header=None,
                          encoding = 'utf-8', engine='python') 

# 合并情感词与评价词
positive = set(pos_comment.iloc[:,0])|set(pos_emotion.iloc[:,0])
negative = set(neg_comment.iloc[:,0])|set(neg_emotion.iloc[:,0])
intersection = positive&negative  # 正负面情感词表中相同的词语
positive = list(positive - intersection)
negative = list(negative - intersection)
positive = pd.DataFrame({"word":positive,
                         "weight":[1]*len(positive)})
negative = pd.DataFrame({"word":negative,
                         "weight":[-1]*len(negative)}) 

posneg = positive.append(negative)

#  将分词结果与正负面情感词表合并,定位情感词
data_posneg = posneg.merge(word, left_on = 'word', right_on = 'word', 
                           how = 'right')
data_posneg = data_posneg.sort_values(by = ['index_content','index_word'])

# 代码12-7 修正情感倾向

# 根据情感词前时候有否定词或双层否定词对情感值进行修正
# 载入否定词表
notdict = pd.read_csv("C:/Users/Lenore/Desktop/data/not.csv")

# 处理否定修饰词
data_posneg['amend_weight'] = data_posneg['weight']  # 构造新列,作为经过否定词修正后的情感值
data_posneg['id'] = np.arange(0, len(data_posneg))
only_inclination = data_posneg.dropna()  # 只保留有情感值的词语
only_inclination.index = np.arange(0, len(only_inclination))
index = only_inclination['id']

for i in np.arange(0, len(only_inclination)):
    review = data_posneg[data_posneg['index_content'] == 
                         only_inclination['index_content'][i]]  # 提取第i个情感词所在的评论
    review.index = np.arange(0, len(review))
    affective = only_inclination['index_word'][i]  # 第i个情感值在该文档的位置
    if affective == 1:
        ne = sum([i in notdict['term'] for i in review['word'][affective - 1]])
        if ne == 1:
            data_posneg['amend_weight'][index[i]] = -\
            data_posneg['weight'][index[i]]          
    elif affective > 1:
        ne = sum([i in notdict['term'] for i in review['word'][[affective - 1, 
                  affective - 2]]])
        if ne == 1:
            data_posneg['amend_weight'][index[i]] = -\
            data_posneg['weight'][index[i]]
            
# 更新只保留情感值的数据
only_inclination = only_inclination.dropna()

# 计算每条评论的情感值
emotional_value = only_inclination.groupby(['index_content'],
                                           as_index=False)['amend_weight'].sum()

# 去除情感值为0的评论
emotional_value = emotional_value[emotional_value['amend_weight'] != 0]

# 代码12-8 查看情感分析效果

# 给情感值大于0的赋予评论类型(content_type)为pos,小于0的为neg
emotional_value['a_type'] = ''
emotional_value['a_type'][emotional_value['amend_weight'] > 0] = 'pos'
emotional_value['a_type'][emotional_value['amend_weight'] < 0] = 'neg'

# 查看情感分析结果
result = emotional_value.merge(word, 
                               left_on = 'index_content', 
                               right_on = 'index_content',
                               how = 'left')

result = result[['index_content','content_type', 'a_type']].drop_duplicates() 
confusion_matrix = pd.crosstab(result['content_type'], result['a_type'], 
                               margins=True)  # 制作交叉表
(confusion_matrix.iat[0,0] + confusion_matrix.iat[1,1])/confusion_matrix.iat[2,2]

# 提取正负面评论信息
ind_pos = list(emotional_value[emotional_value['a_type'] == 'pos']['index_content'])
ind_neg = list(emotional_value[emotional_value['a_type'] == 'neg']['index_content'])
posdata = word[[i in ind_pos for i in word['index_content']]]
negdata = word[[i in ind_neg for i in word['index_content']]]

# 绘制词云
import matplotlib.pyplot as plt
from wordcloud import WordCloud
# 正面情感词词云
freq_pos = posdata.groupby(by = ['word'])['word'].count()
freq_pos = freq_pos.sort_values(ascending = False)
backgroud_Image=plt.imread('C:/Users/Lenore/Desktop/data/pl.jpg')
wordcloud = WordCloud(font_path="C:/Windows/Fonts/STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
pos_wordcloud = wordcloud.fit_words(freq_pos)
plt.rcParams['font.sans-serif'] = 'SimHei' 
plt.title('正面情感词云_3042')
plt.imshow(pos_wordcloud)
plt.axis('off') 
plt.show()
# 负面情感词词云
freq_neg = negdata.groupby(by = ['word'])['word'].count()
freq_neg = freq_neg.sort_values(ascending = False)
neg_wordcloud = wordcloud.fit_words(freq_neg)
plt.rcParams['font.sans-serif'] = 'SimHei' 
plt.title('负面情感词云_3042')
plt.imshow(neg_wordcloud)
plt.axis('off') 
plt.show()

# 将结果写出,每条评论作为一行
posdata.to_csv("C:/Users/Lenore/Desktop/data/posdata.csv", index = False, encoding = 'utf-8')
negdata.to_csv("C:/Users/Lenore/Desktop/data/negdata.csv", index = False, encoding = 'utf-8')
# 代码12-9 建立词典及语料库

import pandas as pd
import numpy as np
import re
import itertools
import matplotlib.pyplot as plt

# 载入情感分析后的数据
posdata = pd.read_csv("C:/Users/Lenore/Desktop/data/posdata.csv", encoding = 'utf-8')
negdata = pd.read_csv("C:/Users/Lenore/Desktop/data/negdata.csv", encoding = 'utf-8')

from gensim import corpora, models
# 建立词典
pos_dict = corpora.Dictionary([[i] for i in posdata['word']])  # 正面
neg_dict = corpora.Dictionary([[i] for i in negdata['word']])  # 负面

# 建立语料库
pos_corpus = [pos_dict.doc2bow(j) for j in [[i] for i in posdata['word']]]  # 正面
neg_corpus = [neg_dict.doc2bow(j) for j in [[i] for i in negdata['word']]]   # 负面

# 代码12-10 主题数寻优

# 构造主题数寻优函数
def cos(vector1, vector2):  # 余弦相似度函数
    dot_product = 0.0;  
    normA = 0.0;  
    normB = 0.0;  
    for a,b in zip(vector1, vector2): 
        dot_product += a*b  
        normA += a**2  
        normB += b**2  
    if normA == 0.0 or normB==0.0:  
        return(None)  
    else:  
        return(dot_product / ((normA*normB)**0.5))   

# 主题数寻优
def lda_k(x_corpus, x_dict):  
    
    # 初始化平均余弦相似度
    mean_similarity = []
    mean_similarity.append(1)
    
    # 循环生成主题并计算主题间相似度
    for i in np.arange(2,11):
        lda = models.LdaModel(x_corpus, num_topics = i, id2word = x_dict)  # LDA模型训练
        for j in np.arange(i):
            term = lda.show_topics(num_words = 50)
            
        # 提取各主题词
        top_word = []
        for k in np.arange(i):
            top_word.append([''.join(re.findall('"(.*)"',i)) \
                             for i in term[k][1].split('+')])  # 列出所有词
           
        # 构造词频向量
        word = sum(top_word,[])  # 列出所有的词   
        unique_word = set(word)  # 去除重复的词
        
        # 构造主题词列表,行表示主题号,列表示各主题词
        mat = []
        for j in np.arange(i):
            top_w = top_word[j]
            mat.append(tuple([top_w.count(k) for k in unique_word]))  
            
        p = list(itertools.permutations(list(np.arange(i)),2))
        l = len(p)
        top_similarity = [0]
        for w in np.arange(l):
            vector1 = mat[p[w][0]]
            vector2 = mat[p[w][1]]
            top_similarity.append(cos(vector1, vector2))
            
        # 计算平均余弦相似度
        mean_similarity.append(sum(top_similarity)/l)
    return(mean_similarity)
            
# 计算主题平均余弦相似度
pos_k = lda_k(pos_corpus, pos_dict)
neg_k = lda_k(neg_corpus, neg_dict)        

# 绘制主题平均余弦相似度图形
from matplotlib.font_manager import FontProperties  
font = FontProperties(size=14)
#解决中文显示问题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False  
fig = plt.figure(figsize=(10,8))
ax1 = fig.add_subplot(211)
ax1.plot(pos_k)
ax1.set_xlabel('正面评论LDA主题数寻优_3042', fontproperties=font)

ax2 = fig.add_subplot(212)
ax2.plot(neg_k)
ax2.set_xlabel('负面评论LDA主题数寻优_3042', fontproperties=font)

# 代码12-10 主题数寻优

# 构造主题数寻优函数
def cos(vector1, vector2):  # 余弦相似度函数
    dot_product = 0.0;  
    normA = 0.0;  
    normB = 0.0;  
    for a,b in zip(vector1, vector2): 
        dot_product += a*b  
        normA += a**2  
        normB += b**2  
    if normA == 0.0 or normB==0.0:  
        return(None)  
    else:  
        return(dot_product / ((normA*normB)**0.5))   

# 主题数寻优
def lda_k(x_corpus, x_dict):  
    
    # 初始化平均余弦相似度
    mean_similarity = []
    mean_similarity.append(1)
    
    # 循环生成主题并计算主题间相似度
    for i in np.arange(2,11):
        lda = models.LdaModel(x_corpus, num_topics = i, id2word = x_dict)  # LDA模型训练
        for j in np.arange(i):
            term = lda.show_topics(num_words = 50)
            
        # 提取各主题词
        top_word = []
        for k in np.arange(i):
            top_word.append([''.join(re.findall('"(.*)"',i)) \
                             for i in term[k][1].split('+')])  # 列出所有词
           
        # 构造词频向量
        word = sum(top_word,[])  # 列出所有的词   
        unique_word = set(word)  # 去除重复的词
        
        # 构造主题词列表,行表示主题号,列表示各主题词
        mat = []
        for j in np.arange(i):
            top_w = top_word[j]
            mat.append(tuple([top_w.count(k) for k in unique_word]))  
            
        p = list(itertools.permutations(list(np.arange(i)),2))
        l = len(p)
        top_similarity = [0]
        for w in np.arange(l):
            vector1 = mat[p[w][0]]
            vector2 = mat[p[w][1]]
            top_similarity.append(cos(vector1, vector2))
            
        # 计算平均余弦相似度
        mean_similarity.append(sum(top_similarity)/l)
    return(mean_similarity)
            
# 计算主题平均余弦相似度
pos_k = lda_k(pos_corpus, pos_dict)
neg_k = lda_k(neg_corpus, neg_dict)        

# 绘制主题平均余弦相似度图形
from matplotlib.font_manager import FontProperties  
font = FontProperties(size=14)
#解决中文显示问题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False  
fig = plt.figure(figsize=(10,8))
ax1 = fig.add_subplot(211)
ax1.plot(pos_k)
ax1.set_xlabel('正面评论LDA主题数寻优_3042', fontproperties=font)

ax2 = fig.add_subplot(212)
ax2.plot(neg_k)
ax2.set_xlabel('负面评论LDA主题数寻优_3042', fontproperties=font)
# 代码12-11 LDA主题分析

# LDA主题分析
pos_lda = models.LdaModel(pos_corpus, num_topics = 3, id2word = pos_dict)  
neg_lda = models.LdaModel(neg_corpus, num_topics = 3, id2word = neg_dict)  
pos_lda.print_topics(num_words = 10)

neg_lda.print_topics(num_words = 10)

 

标签:数据分析,index,word,neg,第十二章,实践,content,pos,data
From: https://www.cnblogs.com/lnxlaila/p/17301036.html

相关文章

  • Drone+.Net 6 实践
    1.[.drone.yml]kind:pipelinetype:dockername:deploymentplatform:os:linuxarch:amd64steps:-name:buildimage:mcr.microsoft.com/dotnet/sdk:6.0volumes:-name:dotnet-buildpath:/mnt/dotnet/appcommands:......
  • 推荐算法在商城系统实践
    一、简介本文博主给大家讲解如何在自己开源的电商项目newbee-mall-pro中应用协同过滤算法来达到给用户更好的购物体验效果。newbee-mall-pro项目地址:源码地址:https://github.com/wayn111/newbee-mall-pro在线地址:http://121.4.124.33/newbeemall二、协同过滤算法协同过......
  • 若依管理系统前端实践
    若依管理系统是一套基于若依框架开发的后台管理系统,它是一个前后端分离的项目,前端使用vue,Element,后端使用SpringBoot&Security。这篇随笔中将记录一下自己在使用过程中前端使用上的一些收获和问题。目录1.路由控制1.1简述1.2token的检验1.3获取角色权限1.4生......
  • Python 进阶指南(编程轻松进阶):十四、实践项目
    原文:http://inventwithpython.com/beyond/chapter14.html到目前为止,这本书已经教会了你编写可读的Python风格代码的技巧。让我们通过查看两个命令行游戏的源代码来实践这些技术:汉诺塔和四人一排。这些项目很短,并且基于文本,以保持它们的范围较小,但是它们展示了本书到目前为......
  • 第十二章-文字的情感分析
    #代码12-1评论去重的代码importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv(r"D:\课程资料\大数据分析\分词\data\reviews.csv")reviews=reviews[['content','content_type']].drop_dupli......
  • 最新中国福彩分析大数据分析大师拥有双色球数据展示微信小程序源码支持双色球数据分析
    demo软件园每日更新资源,请看到最后就能获取你想要的: 1.最新中国福彩分析大数据分析大师拥有双色球数据展示微信小程序源码支持双色球数据分析多个接口福彩大数据分析小程序,数据来自于中国福利彩票 拥有双色球数据展示 双色球数据分析多个接口 数据有每日奖金和往期记录......
  • Python数据分析库介绍及引入惯例
    文章和代码等已经归档至【Github仓库:https://github.com/timerring/dive-into-AI】或者公众号【AIShareLab】回复python数据分析也可获取。python的缺点Python有一个叫做全局解释器锁(GlobalInterpreterLock,GIL)的组件,这是一种防止解释器同时执行多条Python字节码指令的机制。这......
  • AI开发实践:关于停车场中车辆识别与跟踪
    摘要:本案例我们使用FairMOT进行车辆检测与跟踪、yolov5进行车牌检测、crnn进行车牌识别,在停车场入口、出口、停车位对车辆进行跟踪与车牌识别,无论停车场路线多复杂,小车在你掌控之中!本文分享自华为云社区《AI寻车》,作者:杜甫盖房子。本案例我们使用FairMOT进行车辆检测与跟踪、yolov5......
  • JUC并发编程第十四章之StampedLock(读写锁的优化实践)
    JUC并发编程学习路线JUC并发编程第一章之进程/并发/异步的概念[理解基本概念]JUC并发编程第二章之CompletableFuture[加强版的线程]JUC并发编程第三章之Synchronized八锁案例[理解锁的对象]JUC并发编程第四章之公平锁/重入锁/死锁[常见锁的基本认识]JUC并发编程第五章之线程......
  • 基于OCR进行Bert独立语义纠错实践
    摘要:本案例我们利用视频字幕识别中的文字检测与识别模型,增加预训练Bert进行纠错本文分享自华为云社区《Bert特调OCR》,作者:杜甫盖房子。做这个项目的初衷是发现图比较糊/检测框比较长的时候,OCR会有一些错误识别,所以想对识别结果进行纠错。一个很自然的想法是利用语义信息进行纠错,其......