Face Sample Script
# import the necessary packages
from picamera.array import PiRGBArray
from picamera import PiCamera
import time
import cv2
import os
# initialize the camera and grab a reference to the raw camera capture
Image_Height = 128 # Set the image size_Height
Image_Width = 128 # Set the image size_Width
camera = PiCamera()
camera.resolution = (Image_Height, Image_Width)
camera.framerate = 20 # Set the FPS
camera.hflip = True
camera.vflip = False
rawCapture = PiRGBArray(camera, size=(Image_Height, Image_Width))
# allow the camera to warmup
time.sleep(0.1)
Train_Num = 500 # Train DataSet number
Total_Num = 500 # Total DataSet number(Total_Num-Train_Num = Test_Num)
Capture_Count = 1
Current_PWD = os.getcwd()
os.system('mkdir Train_DataSet')
os.system('mkdir Test_DataSet')
Train_Folder = Current_PWD + '/Train_DataSet'
Test_Folder = Current_PWD + '/Test_DataSet'
# Make the journalingFile.log to information the user!
os.system('echo Welcome to the journalingFile > journalingFile.log')
os.system('date >> journalingFile.log')
os.system('echo ------------------------------------------------------------------------- >> journalingFile.log')
os.system('echo Image_Size:' + 'H:' + str(Image_Height) + ' ' + 'W:' + str(Image_Width) + ' >> journalingFile.log')
os.system('echo Image Type is PNG!RGB Color Model! >> journalingFile.log')
os.system('echo Train_DataSet_Number:' + str(Train_Num) + ' >> journalingFile.log')
os.system('echo Test_DataSet_Number:' + str(Total_Num-Train_Num) + ' >> journalingFile.log')
os.system('echo ------------------------------------------------------------------------- >> journalingFile.log')
# capture frames from the camera
for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
# grab the raw NumPy array representing the image, then initialize the timestamp
# and occupied/unoccupied text
image = frame.array
# show the frame
cv2.imshow("Frame", image)
if Capture_Count <= Train_Num:
cv2.imwrite(Train_Folder + '/' + str(Capture_Count) + '.png', image, [int(cv2.IMWRITE_PNG_COMPRESSION), 0])
elif Capture_Count <= Total_Num:
cv2.imwrite(Test_Folder + '/' + str(Capture_Count-Train_Num) + '.png', image, [int(cv2.IMWRITE_PNG_COMPRESSION), 0])
else:
break
Capture_Count += 1
time.sleep(0.05) # The Frame_Rate can be set as 20 FPS
key = cv2.waitKey(1) & 0xFF
# clear the stream in preparation for the next frame
rawCapture.truncate(0)
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
cv2.destroyAllWindows()
Script Users Guide:
Folder for image storage:
- Train_DataSet
- Test_DataSet
Using OpenCV
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml')
cap = cv2.VideoCapture(0)
while True:
ret,img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
cv2.imshow('img',img)
if cv2.waitKey(1) &0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
Deploy the CNN for Trainning & Deteting
waiting....
标签:树莓,人脸识别,Image,cv2,DataSet,camera,journalingFile,os From: https://www.cnblogs.com/uestc-mm/p/9285534.html