微软 3月22日 一篇文章“Semantic-kernel 嵌入和记忆:使用聊天UI探索GitHub Repos”[1] ,文章中进行了展示了嵌入,该文章解释了他们如何帮助开发人员提出有关GitHub存储库的问题或使用自然语言查询探索GitHub存储库。与嵌入一起,这是在SK存储器[2](嵌入集合)的帮助下完成的,这有助于为提示(或SK世界中的ASK)提供更广泛的上下文。
浏览 GitHub 中的示例:https://aka.ms/sk/repo/samples/github-repo-qa-bot
阅读有关示例的文档:https://aka.ms/sk/github-bot
这个示例的聊天模型选择 text-davinci-003:
Embedding 模型选择text-embedding-ada-002:
这个示例向量化的文档是Markdown的文件,我这里使用金融大数据量化分析:https://github.com/plouto-quants/FBDQA-2019A 来做体验一下
把github 仓库中的markdown 文件下载下来后,我们就可以开始体验问答了:
从上面这两个截图你可以看到这个机器人还是很聪明的了,我们问他这个仓库里的文档里的相关问题,都能够回答得很好,这个示例没有记忆功能,也没有持久化,每次运行要重新配置。 实际得产品环境下可以继续基于这样的示例进行加强,把记忆 和 知识库向量持久化做好,那么就可以很轻松的应对以下场景:
- 程序文档
- 学生教育材料
- 公司合同
- 产品文档