我们先假设没有哪两个数是一样的,这样比较方便。
冒泡排序的时候我们会交换一些相邻的数字,最小交换次数就是逆序对数。这是因为,相邻两个数之外的逆序对数不会改变,只有两个数本身 \((i, j)\) 这一对的一定会发生 \(1\) 的变化。没有排好序的时候我们一定能够找到 \(i > j\) 进行交换,逆序对 \(-1\)。
如果我们可以交换任意两个数字,那么排序的最小次数是什么?是置换环个数。考虑对于某一个置换环,我们交换一条环边,可以让 \(a_x = y, a_y = z\) 变成 \(a_y = y, a_x = z\),增加了一个连通块。最后要 \(n\) 个连通块,所以 $n - $ 连通块个数 \(=\) 操作次数。
交换任意两个数还有一个性质:考虑逆序对数奇偶性。对于夹在 \(i,j\) 中间的数 \(k\),考虑 \(k, i, j\) 的四种关系,可以推出,交换 \(i,j\) 之间的位置不会使得 \(ik, jk\) 的逆序对和奇偶性变化;所以所有中间的数不会对奇偶性造成影响。只有 \((i,j)\) 影响了。
因此序列的逆序对个数奇偶性可以看置换环个数,因为任意构造一组交换序列变成 \(1 \sim n\) 都可以,准确来说 $n - $ 连通块个数 \(=\) 逆序对数。
标签:交换,置换,个数,奇偶性,对数,逆序 From: https://www.cnblogs.com/Zeardoe/p/17262755.html