首页 > 其他分享 >LeetCode 周赛 338,贪心 / 埃氏筛 / 欧氏线性筛 / 前缀和 / 二分查找 / 拓扑排序

LeetCode 周赛 338,贪心 / 埃氏筛 / 欧氏线性筛 / 前缀和 / 二分查找 / 拓扑排序

时间:2023-03-27 13:37:17浏览次数:69  
标签:周赛 埃氏 338 index 质数 nums 复杂度 primes 节点

本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。

大家好,我是小彭。

上周末是 LeetCode 第 338 场周赛,你参加了吗?这场周赛覆盖的知识点很多,第四题称得上是近期几场周赛的天花板。

小彭的技术交流群 02 群来了,公众号回复 “加群” 加入我们~


目录

2599. K 件物品的最大和(Easy)

  • 贪心、模拟 $O(1)$

2600. 质数减法运算(Medium)

  • 题解一:暴力枚举 + 二分查找 $O(U\sqrt{U} + nlgU)$
  • 题解二:Eratosthenes 埃氏筛 + 二分查找 $O(UlgU + nlgU)$
  • 题解三:Euler 欧氏线性筛 + 二分查找 $O(U + nlgU)$

2601. 使数组元素全部相等的最少操作次数

  • 前缀和 + 二分查找 $O(nlgn + qlgn)$

2602. 收集树中金币(Hard)

  • 拓扑排序 + 模拟 $O(n)$


2599. K 件物品的最大和(Easy)

题目地址

https://leetcode.cn/problems/k-items-with-the-maximum-sum/description/

题目描述

袋子中装有一些物品,每个物品上都标记着数字  1 、0  或  -1 。

给你四个非负整数  numOnes 、numZeros 、numNegOnes  和  k 。

袋子最初包含:

  • numOnes  件标记为  1  的物品。
  • numZeroes  件标记为  0  的物品。
  • numNegOnes  件标记为  1  的物品。

现计划从这些物品中恰好选出  k  件物品。返回所有可行方案中,物品上所标记数字之和的最大值。

题解(贪心 + 模拟)

简单模拟题,优先选择 1,其次 0,最后 -1。

class Solution {
    fun kItemsWithMaximumSum(numOnes: Int, numZeros: Int, numNegOnes: Int, k: Int): Int {
        var x = k
        // 1
        val oneCnt = Math.min(numOnes, x)
        x -= oneCnt
        if (x == 0) return oneCnt
        // 0
        x -= Math.min(numZeros, x)
        if (x == 0) return oneCnt
        // -1
        return oneCnt - x
    }
}

复杂度分析:

  • 时间复杂度:$O(1)$
  • 空间复杂度:$O(1)$

2600.  质数减法运算(Medium)

题目地址

https://leetcode.cn/problems/prime-subtraction-operation/description/

题目描述

给你一个下标从  0  开始的整数数组  nums ,数组长度为  n 。

你可以执行无限次下述运算:

  • 选择一个之前未选过的下标  i ,并选择一个  严格小于 nums[i]  的质数  p ,从  nums[i]  中减去  p 。

如果你能通过上述运算使得  nums  成为严格递增数组,则返回  true ;否则返回  false 。

严格递增数组  中的每个元素都严格大于其前面的元素。

预备知识

这道题如果熟悉质数筛就是简单二分查找问题。

1、质数定义:

  • 质数 / 素数:只能被 1 和本身整除的数,例如 3,5,7;
  • 合数:除了能被 1 和本身整除外,还能被其他数整除的数。也可以理解为由多个不为 1 的质数相乘组成的数,例如 4 = 2 _ 2,6 = 2 _ 3。
  • 1 既不是质数也不是合数。

2、判断 x 是否为质数:

可以枚举 [2,n-1] 的所有数,检查是否是 x 的因数,时间复杂度是 O(n)。事实上并不需要枚举到 n-1:以 n = 17 为例,假设从 2 枚举到 4 都没有发现因子,我们发现 5 也没必要检查。

可以用反证法证明:如果 17 能够被 5 整除,那么一定存在 17 能够被 17/5 的另一个数整除。而由于 17/5 < 5 与前面验证过 [2,4] 不存在因子的前提矛盾。因此 5 不可能是因子。

由此得出,如果存在整除关系 n/x = y,我们只需要检查 x 和 y 之间的较小值。所有的较小值最大不会超过 n 的平方根。所以我们可以缩小检查范围,只检查 $[1, O(\sqrt{x})]$,时间复杂度是 $O(\sqrt{x})$

3、计算所有小于 n 的质数,有三种算法:

  • 暴力枚举: 枚举每个数,判断它是不是质数,整体时间复杂度是 $O(n\sqrt{n})$
  • Eratosthenes 埃氏筛: 如果 x 不是质数,则从 x*x 开始将成倍的数字标记为非质数,整体时间复杂度是 O(UlgU);
  • Euler 欧氏线性筛: 标记 x 与 “小于等于 x 的最小质因子的质数” 的乘积为非质数,保证每个合数只被标记最小的质因子标记。

题解一(暴力枚举质数 + 二分查找)

为了获得严格递增数组,显然数组的末位元素的约束是最弱的,甚至是没有约束的。所以我们选择从后往前处理,最后一个数不需要处理。

显然如果靠后的元素尽可能大,那么靠前的元素越容易满足条件。因此,我们可以找到贪心思路:从后往前处理,每处理一个数字时,我们尽可能减去满足题目要求的最小质数,减缓数字变小的速度,给靠前的数字留出空间。

容易发现,“满足题目要求的最小质数” 存在单调性可以用二分查找解决。因此我们的题解分为 2 部分:

  • 1、预处理题目数据范围内的所有质数,即小于 1000 的质数列表,可以用预置知识中的两种;
  • 2、使用二分查找寻找 “满足题目要求的最小质数”。
class Solution {

    companion object {
        // 1000 以内的质数列表
        private val primes = getPrimes(1000)

        // 暴力求质数
        private fun getPrimes(max: Int): IntArray {
            val primes = LinkedList<Int>()
            for (num in 2..max) {
                if (isPrime(num)) primes.add(num)
            }
            return primes.toIntArray()
        }

        // 质数判断
        private fun isPrime(num: Int): Boolean {
            var x = 2
            while (x * x <= num) {
                if (num % x == 0) return false
                x++
            }
            return true
        }
    }

    fun primeSubOperation(nums: IntArray): Boolean {
        for (index in nums.size - 2 downTo 0) {
            if (nums[index] < nums[index + 1]) continue
            // 二分查找:寻找严格小于 nums[index] 且减去后形成递增的最小质数
            var left = 0
            var right = primes.size - 1
            while (left < right) {
                val mid = (left + right) ushr 1
                if (primes[mid] >= nums[index] || nums[index] - primes[mid] < nums[index + 1]) {
                    right = mid
                } else {
                    left = mid + 1
                }
            }
            if (primes[left] >= nums[index] || nums[index] - primes[left] >= nums[index + 1]) return false
            nums[index] -= primes[left]
        }
        return true
    }
}

复杂度分析:

  • 时间复杂度:$O(U·\sqrt{U} + nlgU)$ 其中 $n$ 是 $nums$ 数组的长度,$U$ 是输入数据范围,$U$ 为常数 $1000$;
  • 空间复杂度:$O(1)$ 忽略预处理质数空间,仅使用常数级别空间。

题解二(Eratosthenes 埃氏筛 + 二分查找)

计算质数的部分可以用经典埃氏筛。

筛法求质数的思路是:如果 x 是质数,那么 x 的整数倍 2x、3x 一定不是质数。我们设 isPrime[i] 表示 i 是否为质数,从小开始遍历,如果 i 是质数,则同时将所有倍数标记为合数。事实上,我们不必从 x 开始标记,而是直接从 x*x 开始标记,因为 x * 2, x * 3 已经在之前被标记过,会重复标记。

class Solution {

    companion object {
        // 1000 以内的质数列表
        private val primes = getPrimes(1000)

        // 埃氏筛求质数
        private fun getPrimes(max: Int): IntArray {
            val primes = LinkedList<Int>()
            val isPrime = BooleanArray(max + 1) { true }
            for (num in 2..max) {
                // 检查是否为质数,这里不需要调用 isPrime() 函数判断是否质数,因为它没被小于它的数标记过,那么一定不是合数
                if (!isPrime[num]) continue
                primes.add(num)
                // 标记
                var x = num * num
                while (x <= max) {
                    isPrime[x] = false
                    x += num
                }
            }
            return primes.toIntArray()
        }
    }

    fun primeSubOperation(nums: IntArray): Boolean {
        val n = nums.size
        if (n <= 1) return true
        for (index in n - 2 downTo 0) {
            if (nums[index] < nums[index + 1]) continue
            // 二分查找
            var left = 0
            var right = primes.size - 1
            while (left < right) {
                val mid = (left + right) ushr 1
                if (primes[mid] >= nums[index] || nums[index] - primes[mid] < nums[index + 1]) {
                    right = mid
                } else {
                    left = mid + 1
                }
            }
            if (primes[left] >= nums[index] || nums[index] - primes[left] >= nums[index + 1]) return false
            nums[index] -= primes[left]
        }
        return true
    }
}

复杂度分析:

  • 时间复杂度:$O(U·lgU + nlgU)$ 其中 $n$ 是 $nums$ 数组的长度,$U$ 是输入数据范围,$U$ 为常数 $1000$;
  • 空间复杂度:$O(1)$ 忽略预处理质数空间,仅使用常数级别空间。

题解三(Euler 欧氏线性筛 + 二分查找)

尽管我们从 x * x 开始标记来减少重复标记,但 Eratosthenes 筛选法还是会重复标记一个合数。举个例子,400 这个数不仅会被 2 标记一遍,还会被 5 标记,这就导致了大量的重复计算。

为了避免重复标记,我们使用欧氏筛,它与埃氏筛不同的是:

  • 标记过程不再仅对质数 prime 标记,而是对每个数 x 标记;
  • 不再标记所有 x* x 的整数倍,而是标记 x 与 “小于等于 x 的最小质因子的质数” 的乘积,保证每个合数只被标记最小的质因子标记。
class Solution {

    companion object {
        // 1000 以内的质数列表
        private val primes = getPrimes(1000)

        // 线性筛求质数
        private fun getPrimes(max: Int): IntArray {
            val primes = LinkedList<Int>()
            val isPrime = BooleanArray(max + 1) { true }
            for (num in 2..max) {
                // 检查是否为质数,这里不需要调用 isPrime() 函数判断是否质数,因为它没被小于它的数标记过,那么一定不是合数
                if (isPrime[num]) {
                    primes.add(num)
                }
                // 标记
                for (prime in primes) {
                    if (num * prime > max) break
                    isPrime[num * prime] = false
                    if (num % prime == 0) break
                }
            }
            return primes.toIntArray()
        }
    }

    fun primeSubOperation(nums: IntArray): Boolean {
        val n = nums.size
        if (n <= 1) return true
        for (index in n - 2 downTo 0) {
            if (nums[index] < nums[index + 1]) continue
            // 二分查找
            var left = 0
            var right = primes.size - 1
            while (left < right) {
                val mid = (left + right) ushr 1
                if (primes[mid] >= nums[index] || nums[index] - primes[mid] < nums[index + 1]) {
                    right = mid
                } else {
                    left = mid + 1
                }
            }
            if (primes[left] >= nums[index] || nums[index] - primes[left] >= nums[index + 1]) return false
            nums[index] -= primes[left]
        }
        return true
    }
}

复杂度分析:

  • 时间复杂度:$O(U + nlgU)$ 其中 $n$ 是 $nums$ 数组的长度,$U$ 是输入数据范围,$U$ 为常数 $1000$;
  • 空间复杂度:$O(1)$ 忽略预处理质数空间,仅使用常数级别空间。

相似题目:


2601. 使数组元素全部相等的最少操作次数(Medium)

题目地址

https://leetcode.cn/problems/minimum-operations-to-make-all-array-elements-equal

题目描述

给你一个正整数数组  nums 。

同时给你一个长度为  m  的整数数组  queries 。第  i  个查询中,你需要将  nums  中所有元素变成  queries[i] 。你可以执行以下操作  任意  次:

  • 将数组里一个元素  增大  或者  减小 1 。

请你返回一个长度为  m  的数组  **answer ,其中  **answer[i]是将  nums  中所有元素变成  queries[i]  的  最少  操作次数。

注意,每次查询后,数组变回最开始的值。

题解(前缀和 + 二分查找)

一道题很明显有前缀和问题,难点也正是如何把原问题转换为前缀和问题。
如果用暴力解法,我们只需要计算每个元素到 queries[i] 的绝对值之和,单词查询操作的时间复杂度是 O(n),我们不考虑。

为了优化时间复杂度,我们分析数据的特征:

nums = [3,1,6,8], query = 5 为例,小于 5 的 3 和 1 需要增大才能变为 5,大于 5 的 6 和 8 需要减小才能变为 5。因此我们尝试将数组分为两部分 [3,1, | 6,8],需要执行加法的次数为 [+2,+4, | -1,-3]。

然而,我们不需要累加这 n 个差值的绝对值,而是使用前缀和在 O(1) 时间内快速计算。如图所示,小于 5 的部分可以用 “小于 5 的数字个数 _ 5” - “小于 5 的数字之和” 获得,大于 5 的部分可以用 “大于 5 的数字之和” - “大于 5 的数字个数 _ 5” 计算:

而 “小于 5 的数字之和” 与 “大于 5 的数字之和” 是明显的区间求和,可以用前缀和数组在 O(1) 时间复杂度解决。至此,我们成功将原问题转换为前缀和问题。

那么,剩下的问题是如何将数组拆分为两部分?

我们发现对于单次查询来说,我们可以使用快速选择算法在 O(lgn) 时间内找到。但是题目不仅只有一次,所以我们可以先对整个数组排序,再用二分查找找到枚举的分割点。

最后一个细节,由于数组的输入范围很大,所以前缀和数组要定义为 long 数组类型。

class Solution {
    fun minOperations(nums: IntArray, queries: IntArray): List<Long> {
        val n = nums.size
        // 排序
        nums.sort()
        // 前缀和
        val preSums = LongArray(n + 1)
        for (index in nums.indices) {
            preSums[index + 1] = nums[index] + preSums[index]
        }
        val ret = LinkedList<Long>()
        for (target in queries) {
            // 二分查找寻找大于等于 target 的第一个元素
            var left = 0
            var right = n - 1
            while (left < right) {
                val mid = (left + right) ushr 1
                if (nums[mid] < target) {
                    left = mid + 1
                } else {
                    right = mid
                }
            }
            val index = if (nums[left] >= target) left - 1 else left
            val leftSum = 1L * (index + 1) * target - preSums[index + 1]
            val rightSum = preSums[n] - preSums[index + 1] - 1L * (n - 1 - index) * target
            ret.add(leftSum + rightSum)
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度:$O(nlgn + qlgn)$ 其中 $n$ 是 $nums$ 数组的长度,$q$ 是 $queries$ 数组的长度。总共会执行 $q$ 次查询操作,每次查询操作的时间复杂度是 $O(lgn)$;
  • 空间复杂度:$O(n)$ 前缀和数组空间。

近期周赛前缀和问题:


2602. 收集树中金币(Hard)

题目地址

https://leetcode.cn/problems/collect-coins-in-a-tree/

题目描述

给你一个  n  个节点的无向无根树,节点编号从  0  到  n - 1 。给你整数  n  和一个长度为  n - 1  的二维整数数组  edges ,其中  edges[i] = [ai, bi]  表示树中节点  ai  和  bi  之间有一条边。再给你一个长度为  n  的数组  coins ,其中  coins[i]  可能为  0  也可能为  1 ,1  表示节点  i  处有一个金币。

一开始,你需要选择树中任意一个节点出发。你可以执行下述操作任意次:

  • 收集距离当前节点距离为  2  以内的所有金币,或者
  • 移动到树中一个相邻节点。

你需要收集树中所有的金币,并且回到出发节点,请你返回最少经过的边数。

如果你多次经过一条边,每一次经过都会给答案加一。

预备知识

  • 拓扑排序:

给定一个包含 n 个节点的有向图 G,我们给出它的节点编号的一种排列,如果满足: 对于图 G 中的任意一条有向边 (u,v),u 在排列中都出现在 v 的前面。 那么称该排列是图 G 的「拓扑排序」。

  • 拓扑排序的实现思路:

拓扑排序的常规实现是 Kahn 拓扑排序算法,基于 BFS 搜索和贪心思想:每次从图中删除没有前驱的节点(入度为 0),并修改它指向的节点的入度,直到 BFS 队列为空结束。

题解(拓扑排序 + 模拟)

  • 观察示例 1:从节点 2 出发,收集节点 0 处的金币,移动到节点 3 ,收集节点 5 处的金币,然后移动回节点 2。
  • 观察示例 2:从节点 0 出发,收集节点 4 和 3 处的金币,移动到节点 2 处,收集节点 7 处的金币,移动回节点 0。

结合题目规则(收集距离当前节点距离为  2  以内的所有金币)和这 2 个示例分析: 最优路径必然不需要触达图的边缘,而只需要在图的核心部分来回试探 (如示例 1 的节点 2 和节点 3,示例 2 的节点 0 和节点 2)。

  • 1、访问无金币的子树没有意义,我们将整个子树剪枝;
  • 2、叶子节点和距离叶子节点距离为 1 的节点都没有必要访问,我们将这些点剪枝;

剩下的点就是必须经过的核心点。再结合题目规则(你需要收集树中所有的金币,并且回到出发节点),且题目保证输入数据是合法的树,因此答案正好就是剩下部分边的数目 * 2。

class Solution {
    fun collectTheCoins(coins: IntArray, edges: Array<IntArray>): Int {
        val n = coins.size
        // 入度表
        val inDegrees = IntArray(n)
        // 领接表
        val graph = HashMap<Int, MutableList<Int>>()
        for (edge in edges) {
            graph.getOrPut(edge[0]) { LinkedList<Int>() }.add(edge[1])
            graph.getOrPut(edge[1]) { LinkedList<Int>() }.add(edge[0])
            inDegrees[edge[0]]++
            inDegrees[edge[1]]++
        }
        // 剩余的边
        var left_edge = edges.size // n - 1
        // 1、拓扑排序剪枝无金币子树
        val queue = LinkedList<Int>()
        for (node in 0 until n) {
            // 题目是无向图,所以叶子结点的入度也是 1
            if (inDegrees[node] == 1 && coins[node] == 0) {
                queue.offer(node)
            }
        }
        while (!queue.isEmpty()) {
            // 删除叶子结点
            val node = queue.poll()
            left_edge -= 1
            // 修改相邻节点
            for (edge in graph[node]!!) {
                if (--inDegrees[edge] == 1 && coins[edge] == 0) queue.offer(edge)
            }
        }
        // 2、拓扑排序剪枝与叶子结点距离不大于 2 的节点(裁剪 2 层)
        // 叶子节点
        for (node in 0 until n) {
            if (inDegrees[node] == 1 && coins[node] == 1) {
                queue.offer(node)
            }
        }
        for (node in queue) {
            // 2.1 删除叶子结点
            left_edge -= 1
            // 2.2 删除到叶子结点距离为 1 的节点
            for (edge in graph[node]!!) {
                if (--inDegrees[edge] == 1) left_edge -= 1
            }
        }
        // println(inDegrees.joinToString())
        // coins=[0,0],edges=[[0,1]] 会减去所有节点导致出现负数
        return Math.max(left_edge * 2, 0)
    }
}

复杂度分析:

  • 时间复杂度:$O(n)$ 其中 $n$ 是 $coins$ 数组的长度;
  • 空间复杂度:$O(n)$。

相似题目:


有用请支持,你们的支持是我持续分享有价值内容的动力。

标签:周赛,埃氏,338,index,质数,nums,复杂度,primes,节点
From: https://www.cnblogs.com/pengxurui/p/17261219.html

相关文章

  • 浅析数论--埃氏筛/欧拉筛/杜教筛
    \(\mathcal{0x01绪论}\)\(\mathcal{质数的判定试除法or六倍原理}\)一个合数的约数总是成对出现的,如果\(d|n\)(\(d\)能被\(n\)整除),那么\((n/d)|n\),因此我们判断一个......
  • 6357.使数组元素全部相等的最少操作次数-338
    使数组元素全部相等的最小操作次数给你一个正整数数组 nums 。同时给你一个长度为m 的整数数组 queries 。第i 个查询中,你需要将nums 中所有元素变成 queries......
  • 6356.收集树中金币-338
    收集树中金币给你一个n 个节点的无向无根树,节点编号从 0 到 n-1 。给你整数 n 和一个长度为n-1 的二维整数数组edges ,其中 edges[i]=[ai,bi] 表示树......
  • AcWing 第 96 场周赛 T3-4878. 维护数组
    https://www.acwing.com/problem/content/4881/输入样例1:52218112153121221421322123输出样例1:364输入样例2:5410161151551......
  • C++ 2023年计算机学院”新生杯“ACM天梯赛周赛(一) 二进制转化的感悟
    题目描述对于长度为5位的一个01串,每一位都可能是0或1,一共有32种可能。它们的前几个是:0000000001000100001100100请按从小到大的顺序输出这32种01......
  • 刷爆 LeetCode 双周赛 100,单方面宣布第一题最难
    本文已收录到AndroidFamily,技术和职场问题,请关注公众号[彭旭锐]提问。大家好,我是小彭。上周末是LeetCode第100场双周赛,你参加了吗?这场周赛整体没有Hard题,但是......
  • LeetCode337周赛T4 -- 同余
    1.题目描述T42.思路其实本题非常简单。我们只需要知道一个概念:“同余”。即:\(a==b(modc)\),我们称\(a\)和\(b\)相等在\(modc\)意义下。知道了这个点,......
  • 周赛_CF758+CF760
    第一题感觉就是先求gcd载检查是否正确。不过“检查”这一步骤我不是很会。constexprintN=1e2+2;lla[N];#definefaildo{puts("0");gotoloop;}while(0)intmain(){......
  • AcWing 第 93 场周赛 4868. 数字替换(dfs+剪枝)
    https://www.acwing.com/problem/content/4871/题目大意:给定两个整数n,x。(x为原始数据,n为需要我们把x变成的位数)可以对x进行任意次以下操作:选择x的一位数字y,将x替......
  • 2018年东北农业大学春季校赛(周赛训练)
    题解报告题解顺序不是原来比赛的题目顺序题目意思可以去原题了解基本的一些理解和问题都在注释中题目一:wyh的矩阵//思维题,找规律,考虑中点的性质。#include<cstd......