# File model.py # -*- coding: utf-8 -*- import torch import os from torch import nn from transformers import BertForSequenceClassification, BertConfig class BertModel(nn.Module): def __init__(self, num_labels): super(BertModel, self).__init__() self.bert = BertForSequenceClassification.from_pretrained("hfl/chinese-roberta-wwm-ext", num_labels=num_labels) self.device = torch.device("cuda") for param in self.bert.parameters(): param.requires_grad = True # 每个参数都要求梯度,也可以冻结一些层 def forward(self, batch_seqs, batch_seq_masks, batch_seq_segments, labels): loss, logits = self.bert(input_ids = batch_seqs, attention_mask = batch_seq_masks, token_type_ids=batch_seq_segments, labels = labels)[:2] probabilities = nn.functional.softmax(logits, dim=-1) prob, pre_label = torch.max(probabilities, 1) return loss, pre_label, prob
from torch.utils.data import Dataset from hanziconv import HanziConv import pandas as pd import torch class DataPrecessForCLF(Dataset): def __init__(self, bert_tokenizer, df, max_char_len): self.y = torch.LongTensor(df["id"]) self.max_seq_len = max_char_len df["sentence"] = df["sentence"].apply(lambda i: HanziConv.toSimplified(i)) self.encoded_inputs = bert_tokenizer(df["sentence"].tolist(), padding="max_length", truncation=True, max_length=max_char_len, return_tensors="pt") def __len__(self): return len(self.y) def __getitem__(self, idx): assert len(self.encoded_inputs["input_ids"][idx]) == len(self.encoded_inputs["attention_mask"][idx]) == len(self.encoded_inputs["token_type_ids"][idx]) return self.encoded_inputs["input_ids"][idx], self.encoded_inputs["attention_mask"][idx], self.encoded_inputs["token_type_ids"][idx], self.y[idx]
import torch import torch.nn as nn import time from tqdm import tqdm def validate(model, dataloader): model.eval() device = model.device epoch_start = time.time() batch_time_avg = 0.0 running_loss = 0.0 correct_preds = 0 for batch_idx, (batch_seqs, batch_seq_masks, batch_seq_segments, batch_labels) in enumerate(dataloader): batch_start = time.time() seqs, masks, segments, labels = batch_seqs.to(device), batch_seq_masks.to(device), batch_seq_segments.to( device), batch_labels.to(device) loss, pre_label, prob = model(seqs, masks, segments, labels) batch_time_avg += time.time() - batch_start running_loss += loss.item() correct_preds += (pre_label == labels).sum().item() epoch_time = time.time() - epoch_start epoch_loss = running_loss / len(dataloader) epoch_accuracy = correct_preds / len(dataloader.dataset) return epoch_time, epoch_loss, epoch_accuracy def test(model, dataloader, inference=False): model.eval() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备 time_start = time.time() batch_time = 0.0 correct_preds = 0 all_prob = [] all_pred_label = [] all_labels = [] # Deactivate autograd for evaluation. with torch.no_grad(): for (batch_seqs, batch_seq_masks, batch_seq_segments, batch_labels) in dataloader: batch_start = time.time() seqs, masks, segments, labels = batch_seqs.to(device), batch_seq_masks.to(device), batch_seq_segments.to(device), batch_labels.to(device) loss, pre_label, prob = model(seqs, masks, segments, labels) correct_preds += (pre_label == labels).sum().item() batch_time += time.time() - batch_start all_prob.extend(prob.cpu().numpy()) all_pred_label.extend(pre_label.cpu().numpy()) all_labels.extend(batch_labels) batch_time /= len(dataloader) total_time = time.time() - time_start if inference: return all_pred_label, all_prob, total_time accuracy = correct_preds / len(dataloader.dataset) return batch_time, total_time, accuracy def train(model, dataloader, optimizer, epoch_number, max_gradient_norm): model.train() device = model.device epoch_start = time.time() batch_time_avg = 0.0 running_loss = 0.0 correct_preds = 0 tqdm_batch_iterator = tqdm(dataloader) for batch_index, (batch_seqs, batch_seq_masks, batch_seq_segments, batch_labels) in enumerate(tqdm_batch_iterator): batch_start = time.time() seqs, masks, segments, labels = batch_seqs.to(device), batch_seq_masks.to(device), batch_seq_segments.to(device), batch_labels.to(device) optimizer.zero_grad() loss, pre_label, prob = model(seqs, masks, segments, labels) loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_gradient_norm) optimizer.step() batch_time_avg += time.time() - batch_start running_loss += loss.item() correct_preds += (pre_label == labels).sum().item() description = "Avg. batch proc. time: {:.4f}s, loss: {:.4f}"\ .format(batch_time_avg/(batch_index+1), running_loss/(batch_index+1)) tqdm_batch_iterator.set_description(description) epoch_time = time.time() - epoch_start epoch_loss = running_loss / len(dataloader) epoch_accuracy = correct_preds / len(dataloader.dataset) return epoch_time, epoch_loss, epoch_accuracy
# -*- coding: utf-8 -*- import os import sys import torch from torch import nn from torch.utils.data import DataLoader from data import DataPrecessForCLF from utils import train, validate from model import BertModel from transformers import BertTokenizer from transformers.optimization import AdamW import pandas as pd from sklearn.preprocessing import LabelEncoder import json from sklearn.model_selection import train_test_split le = LabelEncoder() def main(train_file, target_dir, epochs=25, batch_size=16, lr=2e-05, patience=5, max_char_len=512, max_grad_norm=10.0, checkpoint=None): bert_tokenizer = BertTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext", do_lower_case=True) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备 print(20 * "=", " Preparing for training ", 20 * "=") # 保存模型的路径 if not os.path.exists(target_dir): os.makedirs(target_dir) # -------------------- Data loading ------------------- # data = pd.read_csv(train_file) data = data[["sentence", "label"]] data["sentence"] = data["sentence"].apply(lambda i: str(i)) data["label"] = data["label"].apply(lambda i: str(i)) data["id"] = torch.LongTensor(le.fit_transform(data["label"])) label = data[["id", "label"]] label = label.drop_duplicates() label_dict = {} for index, row in label.iterrows(): label_dict[row["label"]] = row["id"] refund_map = dict(sorted(label_dict.items(), key=lambda d: d[0])) label_num = len(refund_map) with open(target_dir + '/label2id.json', "w", encoding="utf-8") as f: json.dump(refund_map, f, ensure_ascii=False, indent=4) print("the classification label num is {}".format(label_num)) # train_dev_split df_train, df_dev, y_train, y_test = train_test_split(data, data["label"], test_size=0.2, stratify=data["label"], random_state=666) df_train.reset_index(inplace=True, drop=True) df_dev.reset_index(inplace=True, drop=True) print("\t* Loading training data... , dataset size is {}".format(len(df_train))) train_data = DataPrecessForCLF(bert_tokenizer, df=df_train, max_char_len=max_char_len) train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size) print("\t* Loading validation data... , dataset size is {}".format(len(df_dev))) dev_data = DataPrecessForCLF(bert_tokenizer, df=df_dev, max_char_len=max_char_len) dev_loader = DataLoader(dev_data, shuffle=True, batch_size=batch_size) # -------------------- Model definition ------------------- # print("\t* Building model...") model = BertModel(label_num).to(device) param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ { 'params':[p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay':0.01 }, { 'params':[p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay':0.0 } ] optimizer = AdamW(optimizer_grouped_parameters, lr=lr) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="max", factor=0.85, patience=0) best_score = 0.0 start_epoch = 1 # Data for loss curves plot epochs_count = [] train_losses = [] valid_losses = [] # Continuing training from a checkpoint if one was given as argument if checkpoint: checkpoint = torch.load(checkpoint) start_epoch = checkpoint["epoch"] + 1 best_score = checkpoint["best_score"] print("\t* Training will continue on existing model from epoch {}...".format(start_epoch)) model.load_state_dict(checkpoint["model"]) optimizer.load_state_dict(checkpoint["optimizer"]) epochs_count = checkpoint["epochs_count"] train_losses = checkpoint["train_losses"] valid_losses = checkpoint["valid_losses"] # Compute loss and accuracy before starting (or resuming) training. _, valid_loss, valid_accuracy = validate(model, dev_loader) print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%".format(valid_loss, (valid_accuracy*100))) # -------------------- Training epochs ------------------- # print("\n", 20 * "=", "Training Bert model on device: {}".format(device), 20 * "=") patience_counter = 0 for epoch in range(start_epoch, epochs + 1): epochs_count.append(epoch) print("* Training epoch {}:".format(epoch)) epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader, optimizer, epoch, max_grad_norm) train_losses.append(epoch_loss) print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%" .format(epoch_time, epoch_loss, (epoch_accuracy*100))) print("* Validation for epoch {}:".format(epoch)) epoch_time, epoch_loss, epoch_accuracy = validate(model, dev_loader) valid_losses.append(epoch_loss) print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n" .format(epoch_time, epoch_loss, (epoch_accuracy*100))) # Update the optimizer's learning rate with the scheduler. scheduler.step(epoch_accuracy) # Early stopping on validation accuracy. if epoch_accuracy < best_score: patience_counter += 1 else: best_score = epoch_accuracy patience_counter = 0 torch.save({"epoch": epoch, "model": model.state_dict(), "best_score": best_score, "epochs_count": epochs_count, "train_losses": train_losses, "valid_losses": valid_losses}, os.path.join(target_dir, "0704_nre.pth.tar")) if patience_counter >= patience: print("-> Early stopping: patience limit reached, stopping...") break if __name__ == "__main__": main(os.path.join(base_path, "model_data/train.csv"), os.path.join(base_path, "checkpoint"))
标签:loss,huggingface,label,batch,epoch,time,model From: https://www.cnblogs.com/qiaoqifa/p/16708796.html