首页 > 其他分享 >week4

week4

时间:2023-03-19 23:48:15浏览次数:31  
标签:sort index plt supportData csv data week4

# -*- coding: utf-8 -*-

# 代码8-1 查看数据特征

import numpy as np
import pandas as pd

inputfile = 'data/GoodsOrder.csv'   # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
data.info()  # 查看数据属性

data = data['id']
description = [data.count(),data.min(), data.max()]  # 依次计算总数、最小值、最大值
description = pd.DataFrame(description, index = ['Count','Min', 'Max']).T  # 将结果存入数据框
print('描述性统计结果:\n',np.round(description))  # 输出结果



# 代码8-2 分析热销商品

# 销量排行前10商品的销量及其占比
import pandas as pd
inputfile = 'data/GoodsOrder.csv'  # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
group = data.groupby(['Goods']).count().reset_index()  # 对商品进行分类汇总
sorted=group.sort_values('id',ascending=False)
print('销量排行前10商品的销量:\n', sorted[:10])  # 排序并查看前10位热销商品

# 画条形图展示出销量排行前10商品的销量
import matplotlib.pyplot as plt
x=sorted[:10]['Goods']
y=sorted[:10]['id']
plt.figure(figsize = (8, 4))  # 设置画布大小 
plt.barh(x,y)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.xlabel('销量')  # 设置x轴标题
plt.ylabel('商品类别')  # 设置y轴标题
plt.title('商品的销量TOP10--3043')  # 设置标题
plt.savefig('data/tmp/top10.png')  # 把图片以.png格式保存
plt.show()  # 展示图片

# 销量排行前10商品的销量占比
data_nums = data.shape[0]
for idnex, row in sorted[:10].iterrows():
    print(row['Goods'],row['id'],row['id']/data_nums)


    
    
# 代码8-3 各类别商品的销量及其占比

import pandas as pd
inputfile1 = 'data/GoodsOrder.csv'
inputfile2 = 'data/GoodsTypes.csv'
data = pd.read_csv(inputfile1,encoding = 'gbk')
types = pd.read_csv(inputfile2,encoding = 'gbk')  # 读入数据

group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values('id',ascending = False).reset_index()
data_nums = data.shape[0]  # 总量
del sort['index']

sort_links = pd.merge(sort,types)  # 合并两个datafreame 根据type
# 根据类别求和,每个商品类别的总量,并排序
sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending = False).reset_index()
del sort_link['index']  # 删除“index”列

# 求百分比,然后更换列名,最后输出到文件
sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
sort_link.rename(columns = {'count':'percent'},inplace = True)
print('各类别商品的销量及其占比:\n',sort_link)
outfile1 = 'data/tmp/percent.csv'
sort_link.to_csv(outfile1,index = False,header = True,encoding='gbk')  # 保存结果

# 画饼图展示每类商品销量占比
import matplotlib.pyplot as plt
data = sort_link['percent']
labels = sort_link['Types']
plt.figure(figsize=(8, 6))  # 设置画布大小   
plt.pie(data,labels=labels,autopct='%1.2f%%')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('每类商品销量占比--3043')  # 设置标题
plt.savefig('data/tmp/persent.png')  # 把图片以.png格式保存
plt.show()



# 代码8-4 非酒精饮料内部商品的销量及其占比

# 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '非酒精饮料']  # 挑选商品类别为“非酒精饮料”并排序
child_nums = selected['id'].sum()  # 对所有的“非酒精饮料”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('非酒精饮料内部商品的销量及其占比:\n',selected)
outfile2 = 'data/tmp/child_percent.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

# 画饼图展示非酒精饮品内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小 
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("非酒精饮料内部各商品的销量占比--3043")  # 设置标题
plt.axis('equal')
plt.savefig('data/tmp/child_persent.png')  # 保存图形
plt.show()  # 展示图形

# -*- coding: utf-8 -*-

# 代码8-6 构建关联规则模型

from numpy import *
import pandas as pd

 
def loadDataSet():
    return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'],
            ['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']]
 
def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
    C1.sort()
    # 映射为frozenset唯一性的,可使用其构造字典
    return list(map(frozenset, C1))     
    
# 从候选K项集到频繁K项集(支持度计算)
def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:   # 遍历数据集
        for can in Ck:  # 遍历候选项
            if can.issubset(tid):  # 判断候选项中是否含数据集的各项
                if not can in ssCnt:
                    ssCnt[can] = 1  # 不含设为1
                else:
                    ssCnt[can] += 1  # 有则计数加1
    numItems = float(len(D))  # 数据集大小
    retList = []  # L1初始化
    supportData = {}  # 记录候选项中各个数据的支持度
    for key in ssCnt:
        support = ssCnt[key] / numItems  # 计算支持度
        if support >= minSupport:
            retList.insert(0, key)  # 满足条件加入L1中
            supportData[key] = support  
    return retList, supportData
 
def calSupport(D, Ck, min_support):
    dict_sup = {}
    for i in D:
        for j in Ck:
            if j.issubset(i):
                if not j in dict_sup:
                    dict_sup[j] = 1
                else:
                    dict_sup[j] += 1
    sumCount = float(len(D))
    supportData = {}
    relist = []
    for i in dict_sup:
        temp_sup = dict_sup[i] / sumCount
        if temp_sup >= min_support:
            relist.append(i)
# 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据)
            supportData[i] = temp_sup
    return relist, supportData
 
# 改进剪枝算法
def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1, lenLk):  # 两两组合遍历
            L1 = list(Lk[i])[:k - 2]
            L2 = list(Lk[j])[:k - 2]
            L1.sort()
            L2.sort()
            if L1 == L2:  # 前k-1项相等,则可相乘,这样可防止重复项出现
                # 进行剪枝(a1为k项集中的一个元素,b为它的所有k-1项子集)
                a = Lk[i] | Lk[j]  # a为frozenset()集合
                a1 = list(a)
                b = []
                # 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中
                for q in range(len(a1)):
                    t = [a1[q]]
                    tt = frozenset(set(a1) - set(t))
                    b.append(tt)
                t = 0
                for w in b:
                    # 当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除。
                    if w in Lk:
                        t += 1
                if t == len(b):
                    retList.append(b[0] | b[1])
    return retList

def apriori(dataSet, minSupport=0.2):
# 前3条语句是对计算查找单个元素中的频繁项集
    C1 = createC1(dataSet)
    D = list(map(set, dataSet))  # 使用list()转换为列表
    L1, supportData = calSupport(D, C1, minSupport)
    L = [L1]  # 加列表框,使得1项集为一个单独元素
    k = 2
    while (len(L[k - 2]) > 0):  # 是否还有候选集
        Ck = aprioriGen(L[k - 2], k)
        Lk, supK = scanD(D, Ck, minSupport)  # scan DB to get Lk
        supportData.update(supK)  # 把supk的键值对添加到supportData里
        L.append(Lk)  # L最后一个值为空集
        k += 1
    del L[-1]  # 删除最后一个空集
    return L, supportData  # L为频繁项集,为一个列表,1,2,3项集分别为一个元素

# 生成集合的所有子集
def getSubset(fromList, toList):
    for i in range(len(fromList)):
        t = [fromList[i]]
        tt = frozenset(set(fromList) - set(t))
        if not tt in toList:
            toList.append(tt)
            tt = list(tt)
            if len(tt) > 1:
                getSubset(tt, toList)
 
def calcConf(freqSet, H, supportData, ruleList, minConf=0.7):
    for conseq in H:  #遍历H中的所有项集并计算它们的可信度值
        conf = supportData[freqSet] / supportData[freqSet - conseq]  # 可信度计算,结合支持度数据
        # 提升度lift计算lift = p(a & b) / p(a)*p(b)
        lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq])
 
        if conf >= minConf and lift > 1:
            print(freqSet - conseq, '-->', conseq, '支持度', round(supportData[freqSet], 6), '置信度:', round(conf, 6),
                  'lift值为:', round(lift, 6))
            ruleList.append((freqSet - conseq, conseq, conf))
 
# 生成规则
def gen_rule(L, supportData, minConf = 0.7):
    bigRuleList = []
    for i in range(1, len(L)):  # 从二项集开始计算
        for freqSet in L[i]:  # freqSet为所有的k项集
            # 求该三项集的所有非空子集,1项集,2项集,直到k-1项集,用H1表示,为list类型,里面为frozenset类型,
            H1 = list(freqSet)
            all_subset = []
            getSubset(H1, all_subset)  # 生成所有的子集
            calcConf(freqSet, all_subset, supportData, bigRuleList, minConf)
    return bigRuleList
 
if __name__ == '__main__':
    inputfile='data/GoodsOrder.csv'
    data = pd.read_csv(inputfile,encoding = 'gbk')

    # 根据id对“Goods”列合并,并使用“,”将各商品隔开
    data['Goods'] = data['Goods'].apply(lambda x:','+x)
    data = data.groupby('id').sum().reset_index()

    # 对合并的商品列转换数据格式
    data['Goods'] = data['Goods'].apply(lambda x :[x[1:]])
    data_list = list(data['Goods'])

    # 分割商品名为每个元素
    data_translation = []
    for i in data_list:
        p = i[0].split(',')
        data_translation.append(p)
    print('数据转换结果的前5个元素:\n', data_translation[0:5])

    dataSet = data_translation
    L, supportData = apriori(dataSet, minSupport = 0.02)
    rule = gen_rule(L, supportData, minConf = 0.35)

 

 

 

# -*- coding: utf-8 -*-
"""
Created on Wed Mar 15 11:24:04 2023

@author: admin
"""

# -*- coding: utf-8 -*-

# 代码8-1 查看数据特征

import numpy as np
import pandas as pd

inputfile = 'data/GoodsOrder.csv'   # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
# data.info()  # 查看数据属性


data = data['id']


# 销量排行前10商品的销量及其占比
import pandas as pd
inputfile = 'data/GoodsOrder.csv'  # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
group = data.groupby(['Goods']).count().reset_index()  # 对商品进行分类汇总
sorted=group.sort_values('id',ascending=False)
# print('销量排行前10商品的销量:\n', sorted[:10])  # 排序并查看前10位热销商品

# 画条形图展示出销量排行前10商品的销量
import matplotlib.pyplot as plt
import pandas as pd
inputfile1 = 'data/GoodsOrder.csv'
inputfile2 = 'data/GoodsTypes.csv'
data = pd.read_csv(inputfile1,encoding = 'gbk')
types = pd.read_csv(inputfile2,encoding = 'gbk')  # 读入数据

group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values('id',ascending = False).reset_index()
data_nums = data.shape[0]  # 总量
del sort['index']

sort_links = pd.merge(sort,types)  # 合并两个datafreame 根据type
# 根据类别求和,每个商品类别的总量,并排序
sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending = False).reset_index()
del sort_link['index']  # 删除“index”列

import matplotlib.pyplot as plt


# 代码8-4 非酒精饮料内部商品的销量及其占比

# 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '西点']  # 挑选商品类别为“非酒精饮料”并排序
child_nums = selected['id'].sum()  # 对所有的“非酒精饮料”求和
selected['persent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('西点内部商品的销量及其占比:\n',selected)
outfile2 = 'data/tmp/xidian.csv'
selected.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

# # 画饼图展示非酒精饮品内部各商品的销量占比
import matplotlib.pyplot as plt

data = selected['persent']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小 
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)  # 设置每一块分割出的间隙大小
plt.pie(data,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("西点内部各商品的销量占比--3043")  # 设置标题
plt.axis('equal')
plt.savefig('data/tmp/xidian.png')  # 保存图形
plt.show()  # 展示图形

 

标签:sort,index,plt,supportData,csv,data,week4
From: https://www.cnblogs.com/doushiyaoyan/p/17234851.html

相关文章

  • 考研周记-week4
    3.13~3.19记录一下本周的考研进度情况英语英语的进度任然停留在背单词的阶段,本周每天的新增单词数维持在60词左右,比之前有所下降,因为每天复习的单词数变多了,每天学习英......
  • 2023寒假训练week4
    Day1[蓝桥杯2021省B2]特殊年份签到题目。按照题目要求来就行#include<bits/stdc++.h>usingnamespacestd;constintN=5;intmain(){ intans=0; for(intj=......
  • week4-homework
    1.自定义写出10个定时任务的示例:比如每周三凌晨三点执行data命令要求尽量的覆盖各种场景#我这里之列出了4个我目前能想到的场景301***/bin/sh/backupscripts#......
  • week4题解
    1.深度优先搜索   思路:以固定的移动顺序走迷宫,若能到终点则记一次到终点后回溯到前一个有分岔的地方,走另一条路线若走到死路也同样回溯到前一个有分叉的地方。最......
  • ACM预备队week4(搜索)
    1.迷宫题目链接:P1605迷宫-洛谷|计算机科学教育新生态(luogu.com.cn)dfs1#include<bits/stdc++.h>2usingnamespacestd;3intsx,sy,fx,fy;4intn,m,......
  • Week4-History: Commercialization and Growth
    Week4-History:CommercializationandGrowthWhatinstitutionagreedtoberesponsibleforwebstandardsin1994?World-Wide-WebConsortium(W3C)Between1......
  • NewStarCTF-WEEK4-周报
    目录WEEK4周报canary常见的Canary绕过方式泄露程序地址/栈地址buupwn1_sctf_2016思路jarvisoj_level0思路[第五空间2019决赛]PWN5思路ciscn_2019_n_8思路jarvisoj_level2......
  • 学校Java Week4
    Week4W4L1三元运算符(ternaryoperator)publicstaticvoidmain(String[]args){booleanisCar=true;booleanwasCar=isCar?true:false;......
  • AcWing秋招每日一题——week4
    Mon题目有效的快速序列数目给你 n 笔订单,每笔订单都需要快递服务。请你统计所有有效的收件/配送序列的数目,确保第i个物品的配送服务 delivery(i)总是在其收件......
  • week4
    week4完成作业:1.自定义写出10个定时任务的示例:比如每周三凌晨三点执行data命令要求尽量的覆盖各种场景2.图文并茂说明Linux进程和内存概念3.图文并茂说明Linux启动......