动态开点线段树
使用场景
- \(4 \times n\) 开不下。
- 值域需要平移(有负数)。
什么时候开点
显然,访问的节点不存在时(只会在修改递归时开点)。
trick
区间里面有负数时,\(mid = (l + R - 1) / 2\)。
防止越界。
例如区间 \([-1,0]\)。
开点上限
考虑到 update
一次最多开 \(\log V\) 个点(最多递归 \(\log V\)次)。所以总空间应当开 \(O(m \log n)\)。
代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
int tot;
int n,q;
const int maxn = 4e6+114;
struct Node{
int val, lt, rt, tag;
}tree[maxn];
void pushup(int &x){
tree[x].val=tree[tree[x].lt].val+tree[tree[x].rt].val;
}
void addtag(int &x,int l,int r,int v){
if(x==0){
x=++tot;
}
tree[x].val+=(r-l+1)*v;
tree[x].tag+=v;
}
void pushdown(int &x,int l,int r){
if(l>r) return ;
int mid=(l+r)/2;
addtag(tree[x].lt,l,mid,tree[x].tag);
addtag(tree[x].rt,mid+1,r,tree[x].tag);
tree[x].tag=0;
}
int ask(int &x,int lt,int rt,int l,int r){
if(rt<l||r<lt){
return 0;
}
if(l<=lt&&rt<=r){
return tree[x].val;
}
int mid=(lt+rt)/2;
pushdown(x,lt,rt);
int sum=0;
sum+=ask(tree[x].lt,lt,mid,l,r);
sum+=ask(tree[x].rt,mid+1,rt,l,r);
return sum;
}
void add(int &x,int lt,int rt,int l,int r,int v){
if(rt<l||r<lt){
return ;
}
if(l<=lt&&rt<=r){
addtag(x,lt,rt,v);
return ;
}
int mid=(lt+rt)/2;
pushdown(x,lt,rt);
add(tree[x].lt,lt,mid,l,r,v);
add(tree[x].rt,mid+1,rt,l,r,v);
pushup(x);
}
int root;
signed main(){
int n,q;
cin>>n>>q;
root=++tot;
for(int i=1;i<=n;i++){
int x;
cin>>x;
add(root,1,n,i,i,x);
}
for(int i=1;i<=q;i++){
int op;
cin>>op;
if(op==1){
int x,y,k;
cin>>x>>y>>k;
add(root,1,n,x,y,k);
}
else{
int x,y;
cin>>x>>y;
cout<<ask(root,1,n,x,y)<<'\n';
}
}
}
例题 1
化简题意得维护一个 01
区间,维护区间覆盖,取反以及查询第一个出现的 0
。
显然这个很鬼畜。
首先考虑怎么回答询问。
可以维护区间和,然后在线段树上二分。
然后考虑覆盖。
这个很显然可以维护一个覆盖标记。
那取反呢?
可以当取反和覆盖标记在同一节点时强制消除一个。
显然,取反就是让覆盖标记也取反。
那么就可以写出代码了。
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 4e6+1140;
const int inf = 1e18;
int tot;
struct Node{
long long lc,rc,val,tag1,tag2;
}tree[maxn];//val 表示区间中 1 的个数
void pushup(int x){
tree[x].val=tree[tree[x].lc].val+tree[tree[x].rc].val;
}
void addtag1(int &x,int lt,int rt,int tag)/*翻转*/{
if(x==0) x=++tot;
if(tag==0) return ;
if(tree[x].tag1==1){
tree[x].tag1=0;
tree[x].val=(rt-lt+1)-tree[x].val;
return ;
}
tree[x].tag1=1;
if(tree[x].tag2!=0){
tree[x].tag1=0;
tree[x].tag2=((tree[x].tag2-1)^1)+1;
tree[x].val=(tree[x].tag2-1)*(rt-lt+1);
return ;
}
tree[x].val=(rt-lt+1)-tree[x].val;
return ;
}
void addtag2(int &x,int lt,int rt,int tag){
if(x==0) x=++tot;
if(tag==0) return ;
tree[x].tag1=0;
tree[x].val=(tag-1)*(rt-lt+1);
tree[x].tag2=tag;
//cout<<x<<' '<<lt<<' '<<rt<<'\n';
//cout<<lt<<' '<<rt<<' '<<tree[x].val<<'\n';
return ;
}
void pushdown(int x,int lt,int rt){
if(lt>=rt) return ;
int mid = (lt+rt-1)/2;
addtag1(tree[x].lc,lt,mid,tree[x].tag1);
addtag1(tree[x].rc,mid+1,rt,tree[x].tag1);
tree[x].tag1=0;
addtag2(tree[x].lc,lt,mid,tree[x].tag2);
addtag2(tree[x].rc,mid+1,rt,tree[x].tag2);
tree[x].tag2=0;
}
void reve(int &x,int l,int r,int lt,int rt){
if(r<lt||l>rt) return ;
if(r<=rt&&l>=lt){
addtag1(x,l,r,1);
return ;
}
int mid=(l+r-1)/2;
pushdown(x,l,r);
reve(tree[x].lc,l,mid,lt,rt);
reve(tree[x].rc,mid+1,r,lt,rt);
pushup(x);
}
void cover(int &x,int l,int r,int lt,int rt,int tag){
if(r<lt||l>rt) return ;
if(r<=rt&&l>=lt){
//cout<<"c:"<<l<<' '<<r<<'\n';
addtag2(x,l,r,tag);
return ;
}
int mid=(l+r-1)/2;
pushdown(x,l,r);
cover(tree[x].lc,l,mid,lt,rt,tag);
cover(tree[x].rc,mid+1,r,lt,rt,tag);
pushup(x);
}
int query(int &x,int l,int r){
if(l==r){
return l;
}
pushdown(x,l,r);
int mid = (l+r-1)/2;
if(tree[tree[x].lc].val<(mid-l+1)){
return query(tree[x].lc,l,mid);
}
else{
return query(tree[x].rc,mid+1,r);
}
}
int ask(int &x,int l,int r,int lt,int rt){
if(r<lt||l>rt) return 0;
if(r<=rt&&l>=lt) return tree[x].val;
int mid=(l+r-1)/2;
int sum=0;
pushdown(x,l,r);
sum+=ask(tree[x].lc,l,mid,lt,rt);
sum+=ask(tree[x].rc,mid+1,r,lt,rt);
return sum;
}
inline int read(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*f;
}
inline void write(int x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar(x % 10 + '0'); }
int n,q,root;
signed main(){
q=read();
n=inf;
root=1,tot=1;
while(q--){
int op;
op=read();
if(op==1){
int l,r;
l=read();
r=read();
cover(root,1,n,l,r,2);
}
else if(op==2){
int l,r;
l=read(),r=read();
cover(root,1,n,l,r,1);
}
else{
int l,r;
l=read(),r=read();
reve(root,1,n,l,r);
}
write(query(root,1,n));
putchar('\n');
}
return 0;
}
但是这样过不了,猜猜为什么?
线段树合并
在一个树形结构中每一个节点需要开一个权值线段树且区间范围完全一致)。
trick
与 dsu on tree 的区间:
一个是改变遍历顺序少清空,一个是暴力合并桶
CF600E
线段树记录最重的子树。然后合并答案。
现在就只有合并线段树的问题了。
trick
段树合并完后再还原需要额外空间,因此最好一次跑完答案,因此 线段树合并适合离线
实现(CF 600E)
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e5+114;
const int inf = 1e5;
struct Node{
int ls,rs,val,cnt;// left son right son the anser the cnt
}tree[maxn * 20];
vector<int> edge[maxn];
int col[maxn];
int ans[maxn];
int root[maxn];
int tot;
inline void add(int u,int v){
edge[u].push_back(v);
edge[v].push_back(u);
}
void pushup(int &cur){
//cout<<tree[tree[cur].ls].cnt<<" "<<tree[tree[cur].ls].cnt<<'\n';
if(tree[tree[cur].ls].cnt<tree[tree[cur].rs].cnt){
tree[cur].cnt=tree[tree[cur].rs].cnt;
tree[cur].val=tree[tree[cur].rs].val;
}
else if(tree[tree[cur].rs].cnt<tree[tree[cur].ls].cnt){
tree[cur].cnt=tree[tree[cur].ls].cnt;
tree[cur].val=tree[tree[cur].ls].val;
}
else{
tree[cur].cnt=tree[tree[cur].ls].cnt;
tree[cur].val=tree[tree[cur].ls].val+tree[tree[cur].rs].val;
}
}
void addtag(int &cur,int lt,int rt,int l,int r,int v){
if(lt>r||rt<l) return ;
if(cur==0){
cur=++tot;
}
if(lt==rt){
tree[cur].cnt+=v;
tree[cur].val=lt;
return ;
}
int mid = (lt+rt)/2;
addtag(tree[cur].ls,lt,mid,l,r,v);
addtag(tree[cur].rs,mid+1,rt,l,r,v);
pushup(cur);
}
int merge(int a,int b,int l,int r){
if(a==0||b==0) return a+b;
if(l==r){
tree[a].cnt+=tree[b].cnt;
tree[a].val=l;
return a;
}
int mid=(l+r)/2;
tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
pushup(a);
return a;
}
void dfs(int now,int fa){
for(int nxt:edge[now]){
if(nxt==fa) continue;
dfs(nxt,now);
root[now]=merge(root[now],root[nxt],1,inf);
}
pushup(root[now]);
addtag(root[now],1,inf,col[now],col[now],1);
ans[now]=tree[root[now]].val;
}
signed main(){
int n;
cin>>n;
for(int i=1;i<=n;i++) cin>>col[i];
for(int i=2;i<=n;i++){
int u,v;
cin>>u>>v;
add(u,v);
}
dfs(1,0);
for(int i=1;i<=n;i++){
cout<<ans[i]<<' ';
}
}
[Vani有约会]雨天的尾巴
首先可以考虑树上差分。
然后显然我们只要处理桶合并的问题。
那么显然就可以线段树合并。
#include<bits/stdc++.h>
using namespace std;
const int inf = 2e5;
int n,q;
const int maxn = 2e5+114;
vector<int> Add[maxn*2],Del[maxn*2];
int ans[maxn];
int tot;
int root[maxn];
int fa[maxn][18];
int depth[maxn];
int lg[maxn];
vector<int> edge[maxn];
struct Node{
int ls,rs,val,cnt;// left son right son the anser the cnt
}tree[maxn * 20];
void pushup(int &cur){
//cout<<tree[tree[cur].ls].cnt<<" "<<tree[tree[cur].ls].cnt<<'\n';
if(tree[tree[cur].ls].cnt<tree[tree[cur].rs].cnt){
tree[cur].cnt=tree[tree[cur].rs].cnt;
tree[cur].val=tree[tree[cur].rs].val;
}
else if(tree[tree[cur].rs].cnt<tree[tree[cur].ls].cnt){
tree[cur].cnt=tree[tree[cur].ls].cnt;
tree[cur].val=tree[tree[cur].ls].val;
}
else{
tree[cur].cnt=tree[tree[cur].ls].cnt;
tree[cur].val=min(tree[tree[cur].ls].val,tree[tree[cur].rs].val);
}
}
void addtag(int &cur,int lt,int rt,int l,int r,int v){
if(lt>r||rt<l) return ;
if(cur==0){
cur=++tot;
}
if(lt==rt){
tree[cur].cnt+=v;
tree[cur].val=lt;
return ;
}
int mid = (lt+rt)/2;
addtag(tree[cur].ls,lt,mid,l,r,v);
addtag(tree[cur].rs,mid+1,rt,l,r,v);
pushup(cur);
}
int merge(int a,int b,int l,int r){
if(a==0||b==0) return a+b;
if(l==r){
tree[a].cnt+=tree[b].cnt;
tree[a].val=l;
return a;
}
int mid=(l+r)/2;
tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
pushup(a);
return a;
}
inline void add(int u,int v){
edge[u].push_back(v);
edge[v].push_back(u);
}
inline void dfs1(int now,int fath){
fa[now][0]=fath;
depth[now]=depth[fath] + 1;
for(int i=1;i<=lg[depth[now]];++i)
fa[now][i] = fa[fa[now][i-1]][i-1];
for(int nxt:edge[now]){
if(nxt==fath) continue;
dfs1(nxt,now);
}
}
int LCA(int x,int y){
if(depth[x] < depth[y])
swap(x, y);
while(depth[x] > depth[y])
x=fa[x][lg[depth[x]-depth[y]]- 1];
if(x==y)
return x;
for(int k=lg[depth[x]]-1; k>=0; --k)
if(fa[x][k] != fa[y][k])
x=fa[x][k],y=fa[y][k];
return fa[x][0];
}
void change(int u,int v,int z){
//cout<<u<<' '<<v<<' '<<z<<' '<<LCA(u,v)<<'\n';
Add[u].push_back(z);
Add[v].push_back(z);
int w=LCA(u,v);
Del[w].push_back(z);
Del[fa[w][0]].push_back(z);
}
void dfs2(int now,int fa){
for(int nxt:edge[now]){
if(nxt==fa) continue;
dfs2(nxt,now);
root[now]=merge(root[now],root[nxt],1,inf);
}
pushup(root[now]);
for(int c:Add[now]){
addtag(root[now],1,inf,c,c,1);
}
for(int c:Del[now]){
addtag(root[now],1,inf,c,c,-1);
}
ans[now]=tree[root[now]].val;
}
//树上差分打 add & del 标记,合并到某个节点再统一处理
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>n>>q;
for(int i = 1; i <= n; ++i)
lg[i]=lg[i-1]+(1<<lg[i-1]==i);
for(int i=1;i<n;i++){
int u,v;
cin>>u>>v;
add(u,v);
}
dfs1(1,0);
for(int i=1;i<=q;i++){
int u,v,z;
cin>>u>>v>>z;
change(u,v,z);
}
dfs2(1,0);
for(int i=1;i<=n;i++) cout<<ans[i]<<'\n';
}
CF246E
考虑每个节点维护一个 set
,然后暴力合并。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+114;
map<string,int> use;
int num,a[N];
int dep[N];
vector<int> edge[N];
int root[N];
int ans[N];
vector< pair<int,int> > ask[N];//编号 :深度
int in[N];
struct Node{
int ls,rs;
set<int> chifan;
}tree[N * 20];
int tot;
int n,q;
void update(int &x,int l,int r,int pos,int v){
if(l>pos||r<pos) return ;
if(x==0){
x=++tot;
}
if(l==r&&l==pos){
tree[x].chifan.insert(v);
return ;
}
int mid=(l+r)/2;
update(tree[x].ls,l,mid,pos,v);
update(tree[x].rs,mid+1,r,pos,v);
}
int query(int &x,int l,int r,int pos){
if(l>pos||r<pos){
return 0;
}
if(l==r&&l==pos){
return tree[x].chifan.size();
}
int mid=(l+r)/2,sum=0;
sum+=query(tree[x].ls,l,mid,pos);
sum+=query(tree[x].rs,mid+1,r,pos);
return sum;
}
int merge(int a,int b,int l,int r){
//cout<<a<<' '<<b<<' '<<l<<' '<<r<<'\n';
if(a==0||b==0){
//cout<<a<<' '<<b<<'\n';
return a+b;
}
if(l==r){
for(auto u:tree[b].chifan){
tree[a].chifan.insert(u);
}
//cout<<tree[a].chifan.size()<<'\n';
tree[b].chifan.clear();
return a;
}
int mid=(l+r)/2;
//cout<<tree[a].rs<<' '<<tree[b].rs<<'\n';
tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
return a;
}
void dfs(int cur,int fa){
dep[cur]=dep[fa]+1;
for(int u:edge[cur]){
if(u==fa) continue;
dfs(u,cur);
//cout<<cur<<' '<<root[cur]<<'\n';
root[cur]=merge(root[cur],root[u],1,n);
}
update(root[cur],1,n,dep[cur],a[cur]);
for(int i=0;i<ask[cur].size();i++){
if(dep[cur]+ask[cur][i].second<=n){
//cout<<ask[cur][i].first<<' '<<query(root[cur],1,n,dep[cur]+ask[cur][i].second)<<'\n';
ans[ask[cur][i].first]=query(root[cur],1,n,dep[cur]+ask[cur][i].second);
}
}
}
inline void add(int u,int v){
edge[u].push_back(v);
edge[v].push_back(u);
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>n;
for(int i=1;i<=n;i++){
string s;
cin>>s;
if(use[s]==0){
use[s]=++num;
}
a[i]=use[s];
int x;
cin>>x;
if(x==0) continue;
in[i]++;
add(x,i);
}
cin>>q;
for(int i=1;i<=q;i++){
int x,y;
cin>>x>>y;
ask[x].push_back(make_pair(i,y));
}
for(int i=1;i<=n;i++){
if(in[i]==0){
//cout<<i<<'\n';
dfs(i,0);
}
}
for(int i=1;i<=q;i++){
cout<<ans[i]<<'\n';
}
}
CF208E
一样的做法,考虑二次离线 vector
\(k\) 级祖先即可。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+114;
int num,a[N];
int dep[N];
vector<int> edge[N];
int root[N];
int ans[N];
vector< pair<int,int> > ask[N];//编号 :深度
vector<int> wyb;
int in[N];
struct Node{
int ls,rs;
int val;
}tree[N * 20];
int tot;
int n,q;
void pushup(int x){
tree[x].val=tree[tree[x].ls].val+tree[tree[x].rs].val;
}
void update(int &x,int l,int r,int pos,int v){
if(l>pos||r<pos) return ;
if(x==0){
x=++tot;
}
if(l==r&&l==pos){
tree[x].val+=v;
return ;
}
int mid=(l+r)/2;
update(tree[x].ls,l,mid,pos,v);
update(tree[x].rs,mid+1,r,pos,v);
pushup(x);
}
int query(int &x,int l,int r,int pos){
if(l>pos||r<pos){
return 0;
}
if(l==r&&l==pos){
return tree[x].val;
}
int mid=(l+r)/2,sum=0;
sum+=query(tree[x].ls,l,mid,pos);
sum+=query(tree[x].rs,mid+1,r,pos);
return sum;
}
int merge(int a,int b,int l,int r){
//cout<<a<<' '<<b<<' '<<l<<' '<<r<<'\n';
if(a==0||b==0){
//cout<<a<<' '<<b<<'\n';
return a+b;
}
if(l==r){
tree[a].val+=tree[b].val;
//cout<<tree[a].chifan.size()<<'\n';
tree[b].val=0;
return a;
}
int mid=(l+r)/2;
//cout<<tree[a].rs<<' '<<tree[b].rs<<'\n';
tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
pushup(a);
return a;
}
vector< pair<int,int> > ASK[N];//编号 :深度
void dfs(int cur,int fa){
wyb.push_back(cur);
dep[cur]=dep[fa]+1;
for(int u:edge[cur]){
if(u==fa) continue;
dfs(u,cur);
//cout<<cur<<' '<<root[cur]<<'\n';
root[cur]=merge(root[cur],root[u],1,n);
}
update(root[cur],1,n,dep[cur],1);
for(int i=0;i<ask[cur].size();i++){
int k=ask[cur][i].second;
if(k>=wyb.size()) continue;
int kfa=wyb[wyb.size()-k-1];
//cout<<cur<<' '<<k<<' '<<kfa<<' '<<dep[kfa]+k<<' '<<query(root[kfa],1,n,dep[kfa]+k)<<'\n';
ASK[kfa].push_back(make_pair(ask[cur][i].first,dep[kfa]+k));
/*
if(dep[cur]+ask[cur][i].second<=n){
//cout<<ask[cur][i].first<<' '<<query(root[cur],1,n,dep[cur]+ask[cur][i].second)<<'\n';
ans[ask[cur][i].first]=query(root[cur],1,n,dep[cur]+ask[cur][i].second);
}
*/
}
for(int i=0;i<ASK[cur].size();i++){
//cout<<cur<<' '<<ASK[cur][i].second<<' '<<query(root[cur],1,n,ASK[cur][i].second)<<'\n';
ans[ASK[cur][i].first]=query(root[cur],1,n,ASK[cur][i].second)-1;
}
wyb.pop_back();
}
inline void add(int u,int v){
edge[u].push_back(v);
edge[v].push_back(u);
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>n;
for(int i=1;i<=n;i++){
int x;
cin>>x;
if(x==0) continue;
in[i]++;
add(x,i);
}
cin>>q;
for(int i=1;i<=q;i++){
int x,y;
cin>>x>>y;
ask[x].push_back(make_pair(i,y));
}
for(int i=1;i<=n;i++){
if(in[i]==0){
//cout<<i<<'\n';
dfs(i,0);
}
}
for(int i=1;i<=q;i++){
cout<<ans[i]<<' ';
}
}
标签:rt,val,int,线段,tree,笔记,lt,maxn,动态
From: https://www.cnblogs.com/chifan-duck/p/17228318.html