矩阵快速幂求自幂题目
例:给定A,k,M,求对于指数为 i = (1, ....., k - 1)的A的幂次和对M取模
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 3;
int A, k, M;
void mul(int c[], int a[], int b[][N])
{
int t[N] = {0};
for ( int i = 0; i < N; i ++ ) {
for ( int j = 0; j < N; j ++ ) {
t[i] = (t[i] + a[j] * b[j][i] % M) % M;
}
}
memcpy(c, t, sizeof t);
}
void mul(int c[][N], int a[][N], int b[][N])
{
int t[N][N] = {0};
for ( int i = 0; i < N; i ++ ) {
for ( int j = 0; j < N; j ++ ) {
for ( int k = 0; k < N; k ++ ) {
t[i][j] = (t[i][j] + a[i][k] * a[k][j] % M) % M;
}
}
}
memcpy(c, t, sizeof t);
}
signed main()
{
cin >> A >> k >> M;
int f1[N] = {1, A, 1};
int b[N][N] = {
{0, 0, 0},
{1, A, 1},
{0, 0, 1}
};
k --;
while (k)
{
if (k & 1) mul(f1, f1, b);
mul(b, b, b);
k >>= 1;
}
cout << f1[2] % M << endl;
return 0;
}
矩阵快速幂求斐波那契数O(logn)
struct Node{
int x[2][2];
Node() {
x[0][0] = x[0][1] = x[1][0] = 1;
x[1][1] = 0;
}
};
Node operator *(Node a, Node b)
{
Node t;
memset(t.x, 0, sizeof t.x);
for ( int i = 0; i < 2; i ++ ) {
for ( int j = 0; j < 2; j ++ ) {
for ( int k = 0; k < 2; k ++ ) {
t.x[i][j] = (t.x[i][j] + a.x[i][k] * b.x[k][j]) % mod;
}
}
}
return t;
}
void solve()
{
int n;
cin >> n;
n --;
Node res, m;
while (n)
{
if (n & 1) res = m * res;
n >>= 1;
m = m * m;
}
cout << res.x[0][0] << endl;
}
倍增法求斐波那契数(常数比矩阵小)
#define int long long
const int mod = 1e9 + 7;
pair<int, int> fib(int n) {
if (n == 0) return {0, 1};
auto p = fib(n >> 1);
int c = p.first * (2 * p.second - p.first);
int d = p.first * p.first + p.second * p.second;
if (n & 1)
return {(d % mod + mod) % mod, ((c + d) % mod + mod) % mod};
else
return {(c % mod + mod) % mod, (d % mod + mod) % mod};
}
//fib(n)函数的返回值记为x,x.second值为第n个斐波那契数
标签:Node,int,矩阵,long,++,second,快速,mod
From: https://www.cnblogs.com/kaiwandao/p/17221295.html