\[\begin{aligned} &\int\frac1{\sqrt{x^2+1}}\mathrm dx=\int\frac1{x+t}\mathrm dx \\ &=\int\left(\frac{1-t^2}{2t}+t\right)^{-1}\mathrm d\left(\frac{1-t^2}{2t}\right) \\ &=-\int\frac{2t}{t^2+1}\frac{t^2+1}{2t^2}\mathrm dt \\ &=-\int\frac{1}{t}\mathrm dt=-\ln t+C \\ &=-\ln(\sqrt{x^2+1}-x)+C \\ &=\ln\frac{\sqrt{x^2+1}+x}{(\sqrt{x^2+1}-x)(\sqrt{x^2+1}+x)}+C \\ &=\ln(\sqrt{x^2+1}+x)+C \end{aligned}\] 标签:2t,frac,int,sqrt,ln,一些,有趣,计算方法,mathrm From: https://www.cnblogs.com/JerryTcl/p/17199740.html