主题:客户价值分析
产品:不一定是个具体的东西,可以是一款软件、一则信息
一、背景与挖掘目标
信息时代的来临使得企业营销焦点从产品中心转变为客户中心,客户关系管理成为企业的核心问题。客户关系管理的关键问题是客户分类,通过客户分类,区分无价值客户、高价值客户,企业针对不同价值的客户制定优化的个性化服务方案,采取不同营销策略,将有限营销资源集中于高价值客户,实现企业利润最大化目标。准确的客户分类结果是企业优化营销资源分配的重要依据,客户分类越来越成为客户关系管理中亟待解决的关键问题之一。
面对激烈的市场竞争,各个航空公司都推出了更优惠的营销方式来吸引更多的客户,国内某航空公司面临着常旅客流失、竞争力下降和航空资源未充分利用等经营危机。通过建立合理的客户价值评估模型,对客户进行分群,分析比较不同客户群的客户价值,并制定相应的营销策略,对不同的客户群提供个性化的客户服务是必须的和有效的。结合该航空公司已积累的大量的会员档案信息和其乘坐航班记录,实现以下目标:
- 借助航空公司客户数据,对客户进行分类。
- 对不同的客户类别进行特征分析,比较不同类客户的客户价值。
- 对不同价值的客户类别提供个性化服务,制定相应的营销策略。
二、分析方法与过程
航空客户价值分析案例的流程步骤如下:
- 抽取航空公司2012年4月1日至2014年3月31日的数据。
- 对抽取的数据进行数据探索分析与预处理,包括数据缺失值与异常值的探索分析,数据清洗,特征构建,标准化等操作。
- 基于RFM模型,使用K-Means算法进行客户分群。
- 针对模型结果得到不同价值的客户,采用不同的营销手段,提供定制化的服务。
三、上机实验
数据探索
学会使用 describe()函数:
describe()函数自动计算的字段有count(非空值数)、unique(唯一值数)、top(频数最高者)、 freq(最高频数)、mean(平均值)、std(方差)、min(最小值)、50%(中位数)、max(最大值)。
# 对数据进行基本的探索 # 返回缺失值个数以及最大最小值 import pandas as pd datafile= '../chap7/data/air_data.csv' # 航空原始数据,第一行为属性标签 resultfile = '../chap7/data/explore.csv' # 数据探索结果表 # 读取原始数据,指定UTF-8编码(需要用文本编辑器将数据装换为UTF-8编码) data = pd.read_csv(datafile, encoding = 'utf-8') # 包括对数据的基本描述,percentiles参数是指定计算多少的分位数表(如1/4分位数、中位数等) explore = data.describe(percentiles = [], include = 'all').T # T是转置,转置后更方便查阅 explore['null'] = len(data)-explore['count'] # describe()函数自动计算非空值数,需要手动计算空值数 explore = explore[['null', 'max', 'min']] explore.columns = ['空值数', '最大值', '最小值'] # 表头重命名 ''' 这里只选取部分探索结果。 describe()函数自动计算的字段有count(非空值数)、unique(唯一值数)、top(频数最高者)、 freq(最高频数)、mean(平均值)、std(方差)、min(最小值)、50%(中位数)、max(最大值) ''' explore.to_csv(resultfile) # 导出结果
输出的 explore.csv
# 对数据的分布分析 import pandas as pd import matplotlib.pyplot as plt datafile= '../chap7/data/air_data.csv' # 航空原始数据,第一行为属性标签 # 读取原始数据,指定UTF-8编码(需要用文本编辑器将数据装换为UTF-8编码) data = pd.read_csv(datafile, encoding = 'utf-8')
数据分析:分析客户信息类别
# 客户信息类别 # 提取会员入会年份 from datetime import datetime ffp = data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d')) ffp_year = ffp.map(lambda x : x.year) # 绘制各年份会员入会人数直方图 fig = plt.figure(figsize = (8 ,5)) # 设置画布大小 plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示 plt.rcParams['axes.unicode_minus'] = False plt.hist(ffp_year, bins='auto', color='#0504aa') plt.xlabel('年份') plt.ylabel('入会人数') plt.title('各年份会员入会人数 by number035') plt.show() plt.close
# 提取会员不同性别人数 male = pd.value_counts(data['GENDER'])['男'] female = pd.value_counts(data['GENDER'])['女'] # 绘制会员性别比例饼图 fig = plt.figure(figsize = (8 ,4)) # 设置画布大小 plt.pie([ male, female], labels=['男','女'], colors=['aqua', 'plum'], autopct='%1.1f%%') plt.title('会员性别比例 by number035') plt.show() plt.close
# 提取不同级别会员的人数 lv_four = pd.value_counts(data['FFP_TIER'])[4] lv_five = pd.value_counts(data['FFP_TIER'])[5] lv_six = pd.value_counts(data['FFP_TIER'])[6] # 绘制会员各级别人数条形图 fig = plt.figure(figsize = (8 ,5)) # 设置画布大小 plt.bar(x=range(3), height=[lv_four,lv_five,lv_six], width=0.4, alpha=0.8, color='navy') plt.xticks([index for index in range(3)], ['4','5','6']) plt.xlabel('会员等级') plt.ylabel('会员人数') plt.title('会员各级别人数 by number035') plt.show() plt.close()
# 提取会员年龄 age = data['AGE'].dropna() age = age.astype('int64') # 绘制会员年龄分布箱型图 fig = plt.figure(figsize = (5 ,10)) plt.boxplot(age, patch_artist=True, labels = ['会员年龄'], # 设置x轴标题 boxprops = {'facecolor':'gold'}) # 设置填充颜色 plt.title('会员年龄分布箱线图 by number035') # 显示y坐标轴的底线 plt.grid(axis='y') plt.show() plt.close
# 乘机信息类别 lte = data['LAST_TO_END'] fc = data['FLIGHT_COUNT'] sks = data['SEG_KM_SUM'] # 绘制最后乘机至结束时长箱线图 fig = plt.figure(figsize = (5 ,8)) plt.boxplot(lte, patch_artist=True, labels = ['时长'], # 设置x轴标题 boxprops = {'facecolor':'gold'}) # 设置填充颜色 plt.title('会员最后乘机至结束时长分布箱线图 by number035') # 显示y坐标轴的底线 plt.grid(axis='y') plt.show() plt.close
# 绘制客户飞行次数箱线图 fig = plt.figure(figsize = (5 ,8)) plt.boxplot(fc, patch_artist=True, labels = ['飞行次数'], # 设置x轴标题 boxprops = {'facecolor':'gold'}) # 设置填充颜色 plt.title('会员飞行次数分布箱线图 by number035') # 显示y坐标轴的底线 plt.grid(axis='y') plt.show() plt.close
# 绘制客户总飞行公里数箱线图 fig = plt.figure(figsize = (5 ,10)) plt.boxplot(sks, patch_artist=True, labels = ['总飞行公里数'], # 设置x轴标题 boxprops = {'facecolor':'gold'}) # 设置填充颜色 plt.title('客户总飞行公里数箱线图 by number035') # 显示y坐标轴的底线 plt.grid(axis='y') plt.show() plt.close
# 积分信息类别 # 提取会员积分兑换次数 ec = data['EXCHANGE_COUNT'] # 绘制会员兑换积分次数直方图 fig = plt.figure(figsize = (8 ,5)) # 设置画布大小 plt.hist(ec, bins=5, color='#0504aa') plt.xlabel('兑换次数') plt.ylabel('会员人数') plt.title('会员兑换积分次数分布直方图 by number035') plt.show() plt.close
# 提取会员总累计积分 ps = data['Points_Sum'] # 绘制会员总累计积分箱线图 fig = plt.figure(figsize = (5 ,8)) plt.boxplot(ps, patch_artist=True, labels = ['总累计积分'], # 设置x轴标题 boxprops = {'facecolor':'gold'}) # 设置填充颜色 plt.title('客户总累计积分箱线图 by number035') # 显示y坐标轴的底线 plt.grid(axis='y') plt.show() plt.close
# 提取属性并合并为新数据集 data_corr = data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END', 'SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']] age1 = data['AGE'].fillna(0) data_corr['AGE'] = age1.astype('int64') data_corr['ffp_year'] = ffp_year # 计算相关性矩阵 dt_corr = data_corr.corr(method = 'pearson') print('相关性矩阵为 by number035:\n',dt_corr) # 绘制热力图 import seaborn as sns plt.subplots(figsize=(10, 10)) # 设置画面大小 sns.heatmap(dt_corr, annot=True, vmax=1, square=True, cmap='Blues') plt.title('热力图 by number035') plt.show() plt.close
四、拓展思考
标签:number035,plt,show,航空公司,客户,会员,价值,data From: https://www.cnblogs.com/CiciXuanblog/p/17190816.html