import pandas as pd datafile='air_data.csv' resultfile='explore.csv' data=pd.read_csv(datafile,encoding='utf-8') explore=data.describe(percentiles=[],include='all').T explore['null']=len(data)-explore['count'] explore=explore[['null','max','min']] explore.columns=[u'空值数',u'最大值',u'最小值'] explore.to_csv(resultfile)
from datetime import datetime import matplotlib.pyplot as plt ffp=data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d')) ffp_year=ffp.map(lambda x:x.year) fig=plt.figure(figsize=(8,5)) plt.rcParams['font.sans-serif']='SimHei' plt.rcParams['axes.unicode_minus']=False plt.hist(ffp_year,bins='auto',color='#0504aa') plt.xlabel('年份') plt.ylabel('入会人数') plt.title('各年份会员入会人数3116') plt.show() plt.close male=pd.value_counts(data['GENDER'])['男'] female=pd.value_counts(data['GENDER'])['女'] fig=plt.figure(figsize=(7,4)) plt.pie([male,female],labels=['男','女'],colors=['lightskyblue','lightcoral'],autopct='%1.1f%%') plt.title('会员性别比例3116') plt.show() plt.close lv_four=pd.value_counts(data['FFP_TIER'])[4] lv_five=pd.value_counts(data['FFP_TIER'])[5] lv_six=pd.value_counts(data['FFP_TIER'])[6] fig=plt.figure(figsize=(8,5)) plt.bar(x=range(3),height=[lv_four,lv_five,lv_six],width=0.4,alpha=0.8,color='skyblue') plt.xticks([index for index in range(3)],['4','5','6']) plt.xlabel('会员等级') plt.ylabel('会员人数') plt.title('会员各级人数3116') plt.show() plt.close() age=data['AGE'].dropna() age=age.astype('int64') fig=plt.figure(figsize=(5,10)) plt.boxplot(age,patch_artist=True,labels=['会员年龄'],boxprops={'facecolor':'lightblue'}) plt.title('会员年龄分布箱型图3116') plt.grid(axis='y') plt.show() plt.close
lte=data['LAST_TO_END'] fc=data['FLIGHT_COUNT'] sks=data['SEG_KM_SUM'] fig=plt.figure(figsize=(5,8)) plt.boxplot(lte,patch_artist=True,labels=['时长'],boxprops={'facecolor':'lightblue'}) plt.title('会员最后乘机至结束时长分布箱型图3116') plt.grid(axis='y') plt.show() plt.close fig=plt.figure(figsize=(5,8)) plt.boxplot(fc,patch_artist=True,labels=['飞行次数'],boxprops={'facecolor':'lightblue'}) plt.title('会员飞行次数分布箱型图3116') plt.grid(axis='y') plt.show() plt.close fig=plt.figure(figsize=(5,10)) plt.boxplot(sks,patch_artist=True,labels=['总飞行公里数'],boxprops={'facecolor':'lightblue'}) plt.title('客户总飞行公里数箱型图3116') plt.grid(axis='y') plt.show() plt.close
ec=data['EXCHANGE_COUNT'] fig=plt.figure(figsize=(8,5)) plt.hist(ec,bins=5,color='#0504aa') plt.xlabel('兑换次数') plt.ylabel('会员人数') plt.title('会员兑换积分次数分布直方图3116') plt.show() plt.close ps=data['Points_Sum'] fig=plt.figure(figsize=(5,8)) plt.boxplot(ps,patch_artist=True,labels=['总累计积分'],boxprops={'facecolor':'lightblue'}) plt.title('客户总累计积分箱型图3116') plt.grid(axis='y') plt.show() plt.close
data_corr=data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END','SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']] age1=data['AGE'].fillna(0) data_corr['AGE']=age1.astype('int64') data_corr['ffp_year']=ffp_year dt_corr=data_corr.corr(method='pearson') print('相关性矩阵为:\n',dt_corr) import seaborn as sns plt.subplots(figsize=(10,10)) sns.heatmap(dt_corr,annot=True,vmax=1,square=True,cmap='Blues') plt.title('热力图3116') plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False plt.show() plt.close
import numpy as np import pandas as pd datafile='air_data.csv' cleanedfile='data_cleaned.csv' airline_data=pd.read_csv(datafile,encoding='utf-8') print('原始数据的形状为:',airline_data.shape) airline_notnull=airline_data.loc[airline_data['SUM_YR_1'].notnull() & airline_data['SUM_YR_2'].notnull(),:] print('删除缺失记录后数据的形状为:',airline_notnull.shape) index1=airline_notnull['SUM_YR_1']!=0 index2=airline_notnull['SUM_YR_2']!=0 index3=(airline_notnull['SEG_KM_SUM']>0) & (airline_notnull['avg_discount']!=0) index4=airline_notnull['AGE']>100 airline=airline_notnull[(index1|index2)&index3& ~index4] print('数据清洗后数据的形状为:',airline.shape) airline.to_csv(cleanedfile)
import pandas as pd import numpy as np cleanedfile='data_cleaned.csv' airline=pd.read_csv(cleanedfile,encoding='utf-8') airline_selection=airline[['FFP_DATE','LOAD_TIME','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']] print('筛选的属性前5行为:\n',airline_selection.head())
L=pd.to_datetime(airline_selection['LOAD_TIME'])-pd.to_datetime(airline_selection['FFP_DATE']) L=L.astype('str').str.split().str[0] L=L.astype('int')/30 airline_features=pd.concat([L,airline_selection.iloc[:,2:]],axis=1) print('构建的LRFMC属性前5行为:\n',airline_features.head()) from sklearn.preprocessing import StandardScaler data=StandardScaler().fit_transform(airline_features) np.savez('airline_scale.npz',data) print('标准化后LRFMC 5个属性为:\n',data[:5,:])
import pandas as pd import numpy as np from sklearn.cluster import KMeans airline_scale=np.load('airline_scale.npz')['arr_0'] k=5 kmeans_model=KMeans(n_clusters=k,random_state=123) fit_kmeans=kmeans_model.fit(airline_scale) kmeans_cc=kmeans_model.cluster_centers_ print('各类聚类中心为:\n',kmeans_cc) kmeans_labels=kmeans_model.labels_ print('各样本的类别标签为:\n',kmeans_labels) r1=pd.Series(kmeans_model.labels_).value_counts() print('最终每个类别的数目为:\n',r1) cluster_center=pd.DataFrame(kmeans_model.cluster_centers_,columns=['ZL','ZR','ZF','ZM','ZC']) cluster_center.index=pd.DataFrame(kmeans_model.labels_).drop_duplicates().iloc[:,0] print(cluster_center)
%matplotlib inline import matplotlib.pyplot as plt labels=['ZL','ZR','ZF','ZM','ZC'] legen=['客户群'+str(i+1) for i in cluster_center.index] lstype=['-','--',(0,(3,5,1,5,1,5)),':','-.'] kinds=list(cluster_center.iloc[:,0]) cluster_center=pd.concat([cluster_center,cluster_center[['ZL']]],axis=1) centers=np.array(cluster_center.iloc[:,0:]) n=len(labels) angle=np.linspace(0,2*np.pi,n,endpoint=False) angle=np.concatenate((angle,[angle[0]])) fig=plt.figure(figsize=(8,6)) ax=fig.add_subplot(111,polar=True) plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False for i in range(len(kinds)): ax.plot(angle,centers[i],linestyle=lstype[i],linewidth=2,label=kinds[i]) #ax.set_thetagrids(angle*180/np.pi,labels) plt.title('客户特征分析雷达图3116') plt.legend(legen) plt.show() plt.close
标签:plt,航空公司,labels,客户,airline,pd,import,价值,data From: https://www.cnblogs.com/Nothingtolose/p/17188279.html