首页 > 其他分享 >IPM逆透视变换问题3/3:Ground >> Image

IPM逆透视变换问题3/3:Ground >> Image

时间:2023-03-07 21:14:13浏览次数:41  
标签:cos right Image IPM bmatrix alpha left sin Ground


IPM逆透视变换问题3/3:Ground >> Image

1. 同样如果前置条件如下:

  1. 坐标系坐标系定义为:世界(右-前-上),相机(右-下-前),像素(右-下);
  2. 旋转角度表示为:绕\(z\)轴为\(yaw\)偏航角,绕\(y\)轴为\(roll\)滚转角,绕\(x\)轴负方向为\(pitch\)俯仰角,正负按照右手定则;
  3. 实际上在表达\(yaw,pitch,roll\)姿态角时默认在(前-左-上)坐标系上进行,因此在表达这些角度时也可以增加一个(前-左-上)坐标系,从乘一次旋转矩阵。

2. 则点从世界坐标系到像素坐标系透视变换如下:

像素坐标系图像坐标系的变换为:

\[\begin{aligned} T_{pi} &= T_{ip}^{-1} \\ &=\begin{bmatrix}f_x&0&c_x\\ 0&f_y&c_y\\ 0&0&1\end{bmatrix} \qquad &(16) \end{aligned} \]

图像坐标系相机坐标系的变换(对齐过程)为:

\[\begin{aligned} T_{ic} &=\begin{bmatrix}\frac{1}{z_c}&0&0&0\\ 0&\frac{1}{z_c}&0&0\\ 0&0&\frac{1}{z_c}&0\end{bmatrix} \qquad &(17) \end{aligned} \]

相机坐标系世界坐标系的变换为:

\[\begin{aligned} T_{cw} &= T_{wc}^{-1} \\ &= T_{oc}^{-1} \cdot T_{wo}^{-1} \\ &= T_{oc}^{-1} \cdot T_{wr}^{-1} \cdot T_{wt}^{-1} \\ &= T_{oc}^{-1} \cdot T_{wx}^{-1} \cdot T_{wy}^{-1} \cdot T_{wz}^{-1} \cdot T_{wt}^{-1} \\ T_{cw} &= \begin{bmatrix}1&0&0&0\\ 0&0&-1&0\\ 0&1&0&0\\ 0&0&0&1\end{bmatrix} \cdot \\ &\begin{bmatrix}1&0&0&0\\ 0&\cos \left(α\right)&\sin \left(α\right)&0\\ 0&-\sin \left(α\right)&\cos \left(α\right)&0\\ 0&0&0&1\end{bmatrix} \cdot \begin{bmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\end{bmatrix} \cdot \begin{bmatrix}cos\left(\gamma \right)&sin\left(\gamma \right)&0&0\\ -sin\left(\gamma \right)&cos\left(\gamma \right)&0&0\\ 0&0&1&0\\ 0&0&0&1\end{bmatrix} \cdot \\ &\begin{bmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&1&-h\\ 0&0&0&1\end{bmatrix}\\ T_{cw} &= \begin{bmatrix}\cos \left(γ\right)&\sin \left(γ\right)&0&0\\ -\sin \left(α\right)\sin \left(γ\right)&\sin \left(α\right)\cos \left(γ\right)&-\cos \left(α\right)&h\cos \left(α\right)\\ -\cos \left(α\right)\sin \left(γ\right)&\cos \left(α\right)\cos \left(γ\right)&\sin \left(α\right)&-h\sin \left(α\right)\\ 0&0&0&1\end{bmatrix} \qquad &(17) \end{aligned} \]

世界坐标系图像像素坐标系的变换为:

\[\begin{aligned} T_{pw} &= T_{pi} \cdot T_{ic} \cdot T_{cw} \\ &=\begin{bmatrix}f_x&0&c_x\\ 0&f_y&c_y\\ 0&0&1\end{bmatrix} \begin{bmatrix}\frac{1}{z_c}&0&0&0\\ 0&\frac{1}{z_c}&0&0\\ 0&0&\frac{1}{z_c}&0\end{bmatrix} \begin{bmatrix}\cos \left(γ\right)&\sin \left(γ\right)&0&0\\ -\sin \left(α\right)\sin \left(γ\right)&\sin \left(α\right)\cos \left(γ\right)&-\cos \left(α\right)&h\cos \left(α\right)\\ -\cos \left(α\right)\sin \left(γ\right)&\cos \left(α\right)\cos \left(γ\right)&\sin \left(α\right)&-h\sin \left(α\right)\\ 0&0&0&1\end{bmatrix} \\ &= {\normalsize \frac{1}{z_c}\begin{bmatrix} \cos(\gamma)f_x-\sin(\gamma)\cos(\alpha)c_x &\sin(\gamma)f_x+\cos(\gamma)\cos(\alpha)c_x &\sin(\alpha)c_x &-h\sin(\alpha)c_x \\ -\sin(\gamma)(\sin(\alpha)f_y+\cos(\alpha)c_y) &\cos(\gamma)(\sin(\alpha)f_y+\cos(\alpha)c_y) &\sin(\alpha)c_y-\cos(\alpha)f_y &-h(\sin(\alpha)c_y-\cos(\alpha)f_y) \\ -\sin(\gamma)\cos(\alpha) &\cos(\gamma)\cos(\alpha) &\sin(\alpha)&-h\sin(\alpha)\end{bmatrix}} \qquad &(18) \end{aligned} \]

世界坐标系的点变换到图像像素坐标系的点的过程为:

\[\begin{aligned} \begin{bmatrix}u\\ v\\ 1\end{bmatrix} &= T_{pw} \cdot \begin{bmatrix}x_w\\ y_w\\ z_w\\ 1\end{bmatrix} \\ &={\normalsize \frac{1}{z_c}\begin{bmatrix} \cos(\gamma)f_x-\sin(\gamma)\cos(\alpha)c_x &\sin(\gamma)f_x+\cos(\gamma)\cos(\alpha)c_x &\sin(\alpha)c_x &-h\sin(\alpha)c_x \\ -\sin(\gamma)(\sin(\alpha)f_y+\cos(\alpha)c_y) &\cos(\gamma)(\sin(\alpha)f_y+\cos(\alpha)c_y) &\sin(\alpha)c_y-\cos(\alpha)f_y &-h(\sin(\alpha)c_y-\cos(\alpha)f_y) \\ -\sin(\gamma)\cos(\alpha) &\cos(\gamma)\cos(\alpha) &\sin(\alpha)&-h\sin(\alpha)\end{bmatrix}} \begin{bmatrix}x_w\\ y_w\\ z_w\\ 1\end{bmatrix} \\ &={\normalsize \frac{1}{z_c}\begin{bmatrix} x_w\left(\cos \left(γ\right)f_x-\sin \left(γ\right)c_x\cos \left(α\right)\right)+y_w\left(\cos \left(γ\right)c_x\cos \left(α\right)+\sin \left(γ\right)f_x\right)+c_xz_w\sin \left(α\right)-c_xh\sin \left(α\right)\\ -\sin \left(γ\right)x_w\left(\cos \left(α\right)c_y+\sin \left(α\right)f_y\right)+\cos \left(γ\right)y_w\left(\cos \left(α\right)c_y+\sin \left(α\right)f_y\right)+z_w\left(\sin \left(α\right)c_y-\cos \left(α\right)f_y\right)-h\left(\sin \left(α\right)c_y-\cos \left(α\right)f_y\right)\\ -\sin \left(γ\right)x_w\cos \left(α\right)+\cos \left(γ\right)y_w\cos \left(α\right)+z_w\sin \left(α\right)-h\sin \left(α\right)\end{bmatrix}} \qquad &(19) \end{aligned} \]

具体计算时由于只处理地面上的点,即\(z_w = 0\),所以\(T_{pw}\)第三列均是与0相乘,为了简化计算第三列可以全部设为0,且最后经过单位化消去了\(z_c\)。最后得到计算IPM时从世界地面到像素的变换可从式(18)简化表示为\(T_{3\times 4}\):

\[\begin{aligned} T_{3\times 4} &= {\normalsize \begin{bmatrix} \cos(\gamma)f_x-\sin(\gamma)\cos(\alpha)c_x &\sin(\gamma)f_x+\cos(\gamma)\cos(\alpha)c_x &0 &-h\sin(\alpha)c_x \\ -\sin(\gamma)(\sin(\alpha)f_y+\cos(\alpha)c_y) &\cos(\gamma)(\sin(\alpha)f_y+\cos(\alpha)c_y) &0 &-h(\sin(\alpha)c_y-\cos(\alpha)f_y) \\ -\sin(\gamma)\cos(\alpha) &\cos(\gamma)\cos(\alpha) &0&-h\sin(\alpha)\end{bmatrix}} \qquad &(20) \end{aligned} \]


同样的如果式(20)中的角度\(\alpha,\gamma\)取负值,提取最后一列的\(-h\)。
则所有的 \(sin\) 值取反,同时矩阵的第三列均为0,第四列提取出\(-h\),此时即得到下式:

\[{\color{darkorange} \begin{aligned} T_{IG} &= \begin{bmatrix} f_x\cos(\gamma)+\cos(\alpha) \sin(\gamma)c_x &-f_x\sin(\gamma)+\cos(\alpha) \cos(\gamma)c_x &0 &-\sin(\alpha)c_x \\ \sin(\gamma)(-f_y \sin(\alpha)+\cos(\alpha)c_y) &\cos(\gamma)(-f_y \sin(\alpha)+\cos(\alpha)c_y) &0 &-f_y\cos(\alpha)-\sin(\alpha)c_y \\ \cos(\alpha) \sin(\gamma) &\cos(\alpha) \cos(\gamma) &0 &-\sin(\alpha) \end{bmatrix} \qquad(21) \end{aligned}} \]


标签:cos,right,Image,IPM,bmatrix,alpha,left,sin,Ground
From: https://www.cnblogs.com/streamwill/p/17189658.html

相关文章