首页 > 其他分享 >多头自注意力机制实现及代码

多头自注意力机制实现及代码

时间:2023-03-05 21:34:22浏览次数:49  
标签:dim heads 代码 batch self weights 多头 注意力 size

  注意力机制是一种在给定文本词向量中查找重要词,并赋予一定重要权值的机制。假设输入序列为X,三个随机初始的矩阵键值K(Key) 、查询值Q(Query)和值V(Value)。当 Query、Key、Value 都是从同一个输入序列 X 中生成时,就称为自注意力机制(Self-Attention)。因为相关性有很多种不同的形式,有很多种不同的定义,所以有时不能只有一个q,要有多个q,不同的q负责不同种类的相关性。因此,多头自注意力机制诞生了。

 

 

 

from keras import Sequential, Model
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from keras.layers import Layer, Input, Embedding, Conv1D, Bidirectional, LSTM, Dense, Dropout, BatchNormalization, \
GlobalMaxPooling1D, Flatten
import tensorflow as tf # Only used for various tensor operations


# A more general and complete version of the layer defined in the linked keras example

class MultiHeadSelfAttention(Layer):
""" This uses Bahadanau attention """

def __init__(self, num_heads=8, weights_dim=64):
""" Constructor: Initializes parameters of the Attention layer """

# Initialize base class:
super(MultiHeadSelfAttention, self).__init__()

# Initialize parameters of the layer:
self.num_heads = num_heads
self.weights_dim = weights_dim

if self.weights_dim % self.num_heads != 0:
raise ValueError(
f"Weights dimension = {weights_dim} should be divisible by number of heads = {num_heads} to ensure proper division into sub-matrices")

# We use this to divide the Q,K,V matrices into num_heads submatrices, to compute multi-headed attention
self.sub_matrix_dim = self.weights_dim // self.num_heads

"""
Note that all K,Q,V matrices and their respective weight matrices are initialized and computed as a whole
This ensures somewhat of a parallel processing/vectorization
After computing K,Q,V, we split these into num_heads submatrices for computing the different attentions
"""

# Weight matrices for computing query, key and value (Note that we haven't defined an activation function anywhere)
# Important: In keras units contain the shape of the output
self.W_q = Dense(units=weights_dim)
self.W_k = Dense(units=weights_dim)
self.W_v = Dense(units=weights_dim)

def get_config(self):
""" Required for saving/loading the model """
config = super().get_config().copy()
config.update({
"num_heads": self.num_heads,
"weights_dim": self.weights_dim
# All args of __init__() must be included here
})
return config

def build(self, input_shape):
""" Initializes various weights dynamically based on input_shape """
input_dim = input_shape[-1]
self.input_dim = input_dim
# Weight matrix for combining the output from multiple heads:
# Takes in input of shape (batch_size, seq_len, weights_dim) returns output of shape (batch_size, seq_len, input_dim)
self.W_h = Dense(units=input_dim)

def attention(self, query, key, value):
""" The main logic """
# Compute the raw score = QK^T
score = tf.matmul(query, key, transpose_b=True)

# Scale by dimension of K
dim_key = tf.cast(tf.shape(key)[-1], tf.float32) # == DIM_KEY
scaled_score = score / tf.math.sqrt(dim_key)

# Weights are the softmax of scaled scores
weights = tf.nn.softmax(scaled_score, axis=-1)

# The final output of the attention layer (weighted sum of hidden states)
output = tf.matmul(weights, value)

return output, weights

def separate_heads(self, x, batch_size):
"""
Splits the given x into num_heads submatrices and returns the result as a concatenation of these sub-matrices
"""
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.sub_matrix_dim))
return tf.transpose(x, perm=[0, 2, 1, 3])

def call(self, inputs):
""" All computations take place here """

batch_size = tf.shape(inputs)[0]

# Compute Q = W_q*X
query = self.W_q(inputs) # (batch_size, seq_len, weights_dim)

# Compute K = W_k*X
key = self.W_k(inputs) # (batch_size, seq_len, weights_dim)

# Compute V = W_v*X
value = self.W_v(inputs) # (batch_size, seq_len, weights_dim)

# Split into n_heads submatrices
query = self.separate_heads(query, batch_size) # (batch_size, num_heads, seq_len, sub_matrix_dim)
key = self.separate_heads(key, batch_size) # (batch_size, num_heads, seq_len, sub_matrix_dim)
value = self.separate_heads(value, batch_size) # (batch_size, num_heads, seq_len, sub_matrix_dim)

# Compute attention (contains weights and attentions for all heads):
attention, weights = self.attention(query, key, value)
attention = tf.transpose(attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len, num_heads, sub_matrix_dim)

# Concatenate all attentions from different heads (squeeze the last dimension):
concat_attention = tf.reshape(attention, (batch_size, -1, self.weights_dim)) # (batch_size, seq_len, weights_dim)

# Use a weighted average of the attentions from different heads:
output = self.W_h(concat_attention) # (batch_size, seq_len, input_dim)

return output

def compute_output_shape(self, input_shape):
print(input_shape)
""" Specifies the output shape of the custom layer, without this, the model doesn't work """
return input_shape

 

 

标签:dim,heads,代码,batch,self,weights,多头,注意力,size
From: https://www.cnblogs.com/haosenstudio/p/17181735.html

相关文章