三极管是电子行业常用的元器件之一,他是一种电流型控制的器件,他有三种工作状态:截止区,放大区、饱和区。当三极管当做开关使用时,他工作在饱和区。下面简短讲解三极管作为开关使用的方法,只讲干货。
对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。但三极管厉害的地方在于:它可以通过小电流控制大电流。
放大的原理就在于:通过小的交流输入,控制大的静态直流。假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。
所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。
如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。
截止区:应该是那个小的阀门开启的还不够,不能打开打阀门,这种情况是截止区。
饱和区:应该是小的阀门开启的太大了,以至于大阀门里放出的水流已经到了它极限的流量,但是 你关小 小阀门的话,可以让三极管工作状态从饱和区返回到线性区。
线性区:就是水流处于可调节的状态。
击穿区:比如有水流存在一个水库中,水位太高(相应与Vce太大),导致有缺口产生,水流流出。而且,随着小阀门的开启,这个击穿电压变低,就是更容易击穿了。
原理理解
EB之间电流的导通与EC之间电流的导通成正比,EB小电流导通控制着EC大电流的导通,EB小电流的限制也同比例限制EC大电流的通过。如下图,箭头是指EB小控制电流的方向。
NPN: 当小电流从B至E时(B为+,E为-), 大电流开始可在C至E流动。流动时只能是单方向(C为+,E为-),有像二极管的整流作用。
可以这么理解:看箭头方向,朝外为NPN,B到E箭头方向有小电流时,则C到E会有大电流;
PNP:当小电流从E至B时(E为+,B为-),大电流开始可在E至C流动。流动时只能是单方向(E为+,C为-),有像二极管的整流作用。
可以这么理解:看箭头方向,朝内为PNP,E到B箭头方向有小电流时,则E到C会有大电流;
例子
NPN型三极管的导通:
以驱动蜂鸣器为例,NPN驱动蜂鸣器的电路如下图所示:
单片机的输出口通过一个电阻接到基极。当单片机的管脚SPEAK为高电平时,PN结发生正向偏置,三极管处于导通状态,蜂鸣器两个管脚得电,发声。
记住:NPN三极管的基极为高电平时三极管导通。
PNP型三极管的导通:
单片机的输出口通过一个电阻接到基极。当单片机的管脚SPEAK为低电平时,PN结发生正向偏置,三极管处于导通状态,蜂鸣器两个管脚得电,发声。
记住:PNP三极管的基极为低电平时三极管导通。
————————————————
版权声明:本文为CSDN博主「坚持努力,冲~」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_40078905/article/details/107399592