题意:有一个 \(n\times m\) 的矩阵,每个格子有一个权值。每次操作会选择一个 \(x\times y\) 的矩形区域,花费为“每个位置的权值减去最小权值”之和,区域之间不能重叠。每次会选择花费最小的区间,如果有重复,则优先选上面的,再优先选左边的。输出每次的区域和花费。
显然选区域不会影响其他区域的花费,只会影响其他区域是否可选。思考可以发现,选择一个左上角为 \((a,b)\) 的区域,会导致左上角在 \((a-x+1\sim a+x-1,b-y+1\sim b+y-1)\) 的所有区域不可选。于是每次操作找到当前能选的最优区域,更改其他区域即可。
具体实现上,要用横竖两遍滑动窗口求出每个区域的最小值,再用二维前缀和求出每个区域的权值和,则该区域的花费为权值和减去 \(x\times y\) 倍最小值。
统计答案时,由于常数要求比较严格,需要预先对所有区域进行从优到劣的排序,每次看一个区域是否可选,如果可选就更新,否则到下一个。
对于判断是否可选,可以使用二维树状数组维护,也可以暴力更新。对于暴力更新的复杂度证明:首先发现选的区域个数不会超过 \(\frac{n\cdot m}{x\cdot y}\),而每次暴力更新的复杂度为 \(4xy\),所以更新的总复杂度为 \(4nm\)。
暴力更新 By cxm1024
#include<bits/stdc++.h>
using namespace std;
#define int long long
int read() {
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=(ch=='-'?-1:f),ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x*f;
}
int a[1010][1010],s[1010][1010],t[1010][1010],sum[1010][1010];
bool vis[1010][1010];
signed main() {
int n=read(),m=read(),x=read(),y=read();
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
a[i][j]=read();
sum[i][j]=sum[i][j-1]+a[i][j];
}
deque<pair<int,int> > q;
for(int j=0;j<y;j++) {
while(!q.empty()&&q.back().second>=a[i][j])
q.pop_back();
q.push_back({j,a[i][j]});
}
for(int j=y;j<=m;j++) {
if(!q.empty()&&q.front().first==j-y)
q.pop_front();
while(!q.empty()&&q.back().second>=a[i][j])
q.pop_back();
q.push_back({j,a[i][j]});
s[i][j-y+1]=q.front().second;
}
}
for(int j=1;j<=m-y+1;j++) {
deque<pair<int,int> > q;
for(int i=0;i<x;i++) {
while(!q.empty()&&q.back().second>=s[i][j])
q.pop_back();
q.push_back({i,s[i][j]});
}
for(int i=x;i<=n;i++) {
if(!q.empty()&&q.front().first==i-x)
q.pop_front();
while(!q.empty()&&q.back().second>=s[i][j])
q.pop_back();
q.push_back({i,s[i][j]});
t[i-x+1][j]=q.front().second;
}
}
for(int j=1;j<=m;j++)
for(int i=1;i<=n;i++)
sum[i][j]+=sum[i-1][j];
vector<pair<int,pair<int,int> > > v;
for(int i=1;i<=n-x+1;i++)
for(int j=1;j<=m-y+1;j++) {
int res=sum[i+x-1][j+y-1];
res-=sum[i+x-1][j-1]+sum[i-1][j+y-1];
res+=sum[i-1][j-1];
v.push_back({res-t[i][j]*x*y,{i,j}});
}
sort(v.begin(),v.end());
vector<pair<int,pair<int,int> > > ans;
for(auto [tmp,pos]:v) {
auto [i,j]=pos;
if(vis[i][j]) continue;
ans.push_back({tmp,pos});
for(int di=-x+1;di<=x-1;di++)
for(int dj=-y+1;dj<=y-1;dj++)
if(i+di>0&&j+dj>0) vis[i+di][j+dj]=1;
}
printf("%lu\n",ans.size());
for(auto [tmp,pos]:ans)
printf("%lld %lld %lld\n",pos.first,pos.second,tmp);
return 0;
}
二维树状数组 By vepifanov
int n;
int m;
int f[1001][1001];
int ww[1001][1001], w[1001][1001], g[1001][1001];
long long s[1001][1001];
ii st[1001];
vector<pair<long long, pair<int, int> > > all;
vector<pair<pair<int, int>, long long > > res;
int add (int x, int y) {
for (int p = x; p <= n; p |= (p + 1))
for (int q = y; q <= m; q |= (q + 1))
f[p][q]++;
}
int get (int x, int y) {
int s = 0;
for (int p = x; p > 0; p = (p & (p + 1)) - 1)
for (int q = y; q > 0; q = (q & (q + 1)) - 1)
s += f[p][q];
return s;
}
int main() {
int a, b;
scanf ("%d%d%d%d", &n, &m, &a, &b);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
scanf ("%d", &g[i][j]);
memset (s, 0, sizeof (s));
for (int i = n - 1; i >= 0; i--)
for (int j = m - 1; j >= 0; j--)
s[i][j] = s[i + 1][j] + s[i][j + 1] - s[i + 1][j + 1] + g[i][j];
for (int i = 0; i < n; i++) {
int r = 0, l = 0;
for (int j = 0; j < m; j++) {
while (l < r && st[l].second + b <= j) l++;
while (r > l && st[r - 1].first > g[i][j]) r--;
st[r++] = make_pair (g[i][j], j);
if (j - b + 1 >= 0) ww[i][j - b + 1] = st[l].first;
}
}
for (int j = 0; j + b <= m; j++) {
int r = 0, l = 0;
for (int i = 0; i < n; i++) {
while (l < r && st[l].second + a <= i) l++;
while (r > l && st[r - 1].first > ww[i][j]) r--;
st[r++] = make_pair (ww[i][j], i);
if (i - a + 1 >= 0) w[i - a + 1][j] = st[l].first;
}
}
for (int i = 0; i + a <= n; i++)
for (int j = 0; j + b <= m; j++) {
long long cur = s[i][j] - s[i + a][j] - s[i][j + b] + s[i + a][j + b];
cur -= (long long)w[i][j] * a * b;
all.push_back (make_pair (cur, make_pair (i, j)));
}
sort (all.begin (), all.end ());
for (int i = 0; i < all.size (); i++) {
long long q = all[i].first;
int x = all[i].second.first;
int y = all[i].second.second;
if (get (x + a, y + b) - get (max (x - a + 1, 0), y + b) - get (x + a, max (y - b + 1, 0)) + get (max (x - a + 1, 0), max (y - b + 1, 0)) == 0) {
res.push_back (make_pair (make_pair (x, y), q));
add (x + 1, y + 1);
}
}
printf ("%d\n", res.size ());
for (int i = 0; i < res.size (); i++)
printf ("%d %d %I64d\n", res[i].first.first + 1, res[i].first.second + 1, res[i].second);
return 0;
}
标签:Map,CF15D,int,题解,back,st,区域,1010,1001
From: https://www.cnblogs.com/cxm1024/p/17168408.html