首页 > 其他分享 >K8S-二进制安装

K8S-二进制安装

时间:2023-02-21 01:22:06浏览次数:52  
标签:opt k8s 二进制 192.168 etcd K8S 安装 节点 kube

一.部署二进制概述

使用Kubernetes(k8s)二进制安装的优点包括:

  • 可以使用最新版本:当你使用二进制安装时,你可以选择使用最新版本的k8s。这使你能够使用最新的功能,同时避免了某些版本的已知问题和漏洞。

  • 可以使用自定义配置:二进制安装可以允许您使用自己定义的配置文件,而不是依赖于软件包提供的默认配置文件。这可以允许你自定义集群的各个方面,如网络插件、存储插件等,以满足你的特定需求。

  • 更快的升级:使用二进制安装,你可以在几分钟内升级k8s的版本。因为你不需要等待Linux发行版为你提供软件包更新,这使得k8s集群的升级速度更快。

  • 更少的依赖:使用二进制安装,你可以少安装一些额外的依赖关系,因为二进制文件包含了所有必需的依赖,而不需要为了满足k8s依赖而安装大量其他软件包。

  • 更大的灵活性:使用二进制安装可以允许你更灵活地定制k8s集群。你可以根据你的需要启用或禁用特定的功能或组件,而不会受到发行版软件包的限制。

  • 需要注意的是,使用二进制安装需要更多的工作,包括手动管理依赖关系、配置文件和安全设置。因此,使用二进制安装可能需要一些专业知识,特别是对于那些没有经验的用户。

二.部署二进制

2.1 部署环境

二进制搭建 Kubernetes v1.20

k8s集群master01:192.168.61.100    kube-apiserver kube-controller-manager kube-scheduler etcd
k8s集群master02:192.168.61.200

k8s集群node01:192.168.61.101    kubelet kube-proxy docker 
k8s集群node02:192.168.61.102

etcd集群节点1:192.168.61.100    etcd
etcd集群节点2:192.168.61.101
etcd集群节点3:192.168.61.102

负载均衡nginx+keepalive01(master):192.168.61.11
负载均衡nginx+keepalive02(backup):192.168.61.12

VIP 192.168.61.66

 

2.2 操作系统初始化【所有节点】

#关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X

#关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

#关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab 

#根据规划设置主机名
hostnamectl set-hostname master01
hostnamectl set-hostname node01
hostnamectl set-hostname node02

#在master添加hosts
cat >> /etc/hosts << EOF
192.168.61.100 master01
192.168.61.200 master02
192.168.61.101 node01
192.168.61.102 node02
EOF

 

 

#调整内核参数
cat > /etc/sysctl.d/k8s.conf << EOF
#开启网桥模式,可将网桥的流量传递给iptables链
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
#关闭ipv6协议
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOF

sysctl --system

#时间同步
yum install ntpdate -y
ntpdate time.windows.com

 

 

2.3 部署docker引擎

#所有 node 节点部署docker引擎
yum install -y yum-utils device-mapper-persistent-data lvm2 
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 
yum install -y docker-ce docker-ce-cli containerd.io

systemctl start docker.service
systemctl enable docker.service 

 

 

2.4 部署etcd集群【⭐⭐⭐】

  • etcd是CoreOS团队于2013年6月发起的开源项目,它的目标是构建一个高可用的分布式键值(key-value)数据库。etcd内部采用raft协议作为一致性算法,etcd是go语言编写的。

etcd 作为服务发现系统,有以下的特点:

  • 简单:安装配置简单,而且提供了HTTP API进行交互,使用也很简单
  • 安全:支持SSL证书验证
  • 快速:单实例支持每秒2k+读操作
  • 可靠:采用raft算法,实现分布式系统数据的可用性和一致性

etcd 目前默认使用2379端口提供HTTP API服务, 2380端口和peer通信(这两个端口已经被IANA(互联网数字分配机构)官方预留给etcd)。 即etcd默认使用2379端口对外为客户端提供通讯,使用端口2380来进行服务器间内部通讯。
etcd 在生产环境中一般推荐集群方式部署。由于etcd 的leader选举机制,要求至少为3台或以上的奇数台。

准备签发证书环境

  • CFSSL 是 CloudFlare 公司开源的一款 PKI/TLS 工具。 CFSSL 包含一个命令行工具和一个用于签名、验证和捆绑 TLS 证书的 HTTP API 服务。使用Go语言编写。
  • CFSSL 使用配置文件生成证书,因此自签之前,需要生成它识别的 json 格式的配置文件,CFSSL 提供了方便的命令行生成配置文件。

CFSSL 用来为 etcd 提供 TLS 证书,它支持签三种类型的证书:

  • client 证书,服务端连接客户端时携带的证书,用于客户端验证服务端身份,如 kube-apiserver 访问 etcd;
  • server 证书,客户端连接服务端时携带的证书,用于服务端验证客户端身份,如 etcd 对外提供服务;
  • peer 证书,相互之间连接时使用的证书,如 etcd 节点之间进行验证和通信。

这里全部都使用同一套证书认证。

//在 master01 节点上操作     

#准备cfssl证书生成工具
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo

chmod +x /usr/local/bin/cfssl*
------------------------------------------------------------------------------------------
cfssl:证书签发的工具命令
cfssljson:将 cfssl 生成的证书(json格式)变为文件承载式证书
cfssl-certinfo:验证证书的信息
cfssl-certinfo -cert <证书名称>            #查看证书的信息
------------------------------------------------------------------------------------------

### 生成Etcd证书 ###
mkdir /opt/k8s
cd /opt/k8s/

#上传 etcd-cert.sh 和 etcd.sh 到 /opt/k8s/ 目录中
chmod +x etcd-cert.sh etcd.sh

#创建用于生成CA证书、etcd 服务器证书以及私钥的目录
mkdir /opt/k8s/etcd-cert
mv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh            #生成CA证书、etcd 服务器证书以及私钥

ls
ca-config.json  ca-csr.json  ca.pem        server.csr       server-key.pem
ca.csr          ca-key.pem   etcd-cert.sh  server-csr.json  server.pem

#上传 etcd-v3.4.9-linux-amd64.tar.gz 到 /opt/k8s 目录中,启动etcd服务
https://github.com/etcd-io/etcd/releases/download/v3.4.9/etcd-v3.4.9-linux-amd64.tar.gz

cd /opt/k8s/
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
ls etcd-v3.4.9-linux-amd64
Documentation  etcd  etcdctl  README-etcdctl.md  README.md  READMEv2-etcdctl.md
------------------------------------------------------------------------------------------
etcd就是etcd 服务的启动命令,后面可跟各种启动参数
etcdctl主要为etcd 服务提供了命令行操作
------------------------------------------------------------------------------------------

#创建用于存放 etcd 配置文件,命令文件,证书的目录
mkdir -p /opt/etcd/{cfg,bin,ssl}

cd /opt/k8s/etcd-v3.4.9-linux-amd64/
mv etcd etcdctl /opt/etcd/bin/
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/

cd /opt/k8s/
./etcd.sh etcd01 192.168.61.100 etcd02=https://192.168.61.101:2380,etcd03=https://192.168.61.102:2380
#进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,可忽略这个情况

#可另外打开一个窗口查看etcd进程是否正常
ps -ef | grep etcd

#把etcd相关证书文件、命令文件和服务管理文件全部拷贝到另外两个etcd集群节点
scp -r /opt/etcd/ root@192.168.61.101:/opt/
scp -r /opt/etcd/ root@192.168.61.102:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.61.101:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.61.102:/usr/lib/systemd/system/

 

 

#在 node01 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd02"                                            #修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.61.101:2380"            #修改
ETCD_LISTEN_CLIENT_URLS="https://192.168.61.101:2379"        #修改

#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.61.101:2380"        #修改
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.61.101:2379"                #修改
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.61.100:2380,etcd02=https://192.168.61.101:2380,etcd03=https://192.168.61.102:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"

#启动etcd服务
systemctl start etcd
systemctl enable etcd     ##systemctl enable --now etcd
systemctl在enable、disable、mask子命令里面增加了--now选项,可以激活同时启动服务,激活同时停止服务等。

systemctl status etcd

 

 

#在 node02 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd03"                                            #修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.10.19:2380"            #修改
ETCD_LISTEN_CLIENT_URLS="https://192.168.10.19:2379"        #修改

#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.10.19:2380"        #修改
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.10.19:2379"                #修改
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.10.80:2380,etcd02=https://192.168.10.18:2380,etcd03=https://192.168.10.19:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"

#启动etcd服务
systemctl start etcd
systemctl enable etcd
systemctl status etcd

#检查etcd群集状态
ETCDCTL_API=3   /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.61.100:2379,https://192.168.61.101:2379,https://192.168.61.102:2379" endpoint health --write-out=table

ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.61.100:2379,https://192.168.61.101:2379,https://192.168.61.102:2379" endpoint status --write-out=table

------------------------------------------------------------------------------------------
--cert-file:识别HTTPS端使用SSL证书文件
--key-file:使用此SSL密钥文件标识HTTPS客户端
--ca-file:使用此CA证书验证启用https的服务器的证书
--endpoints:集群中以逗号分隔的机器地址列表
cluster-health:检查etcd集群的运行状况
------------------------------------------------------------------------------------------

#查看etcd集群成员列表
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.61.100:2379,https://192.168.61.101:2379,https://192.168.6.102:2379" --write-out=table member list

 

 

2.5 部署Master组件

#在 master01 节点上操作
#上传 master.zip 和 k8s-cert.sh 到 /opt/k8s 目录中,解压 master.zip 压缩包
cd /opt/k8s/
unzip master.zip
chmod +x *.sh

#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

#创建用于生成CA证书、相关组件的证书和私钥的目录
mkdir /opt/k8s/k8s-cert
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
./k8s-cert.sh                #生成CA证书、相关组件的证书和私钥

ls *pem
admin-key.pem  apiserver-key.pem  ca-key.pem  kube-proxy-key.pem  
admin.pem      apiserver.pem      ca.pem      kube-proxy.pem

#复制CA证书、apiserver相关证书和私钥到 kubernetes工作目录的 ssl 子目录中
cp ca*pem apiserver*pem /opt/kubernetes/ssl/

#上传 kubernetes-server-linux-amd64.tar.gz 到 /opt/k8s/ 目录中,解压 kubernetes 压缩包
#下载地址:https://github.com/kubernetes/kubernetes/blob/release-1.20/CHANGELOG/CHANGELOG-1.20.md
#注:打开链接你会发现里面有很多包,下载一个server包就够了,包含了Master和Worker Node二进制文件。

 

 

cd /opt/k8s/
tar zxvf kubernetes-server-linux-amd64.tar.gz

#复制master组件的关键命令文件到 kubernetes工作目录的 bin 子目录中
cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/

#创建 bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用 RBAC 给他授权
cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF

chmod +x token.sh
./token.sh

cat /opt/kubernetes/cfg/token.csv

 

 

#二进制文件、token、证书都准备好后,开启 apiserver 服务
cd /opt/k8s/
./apiserver.sh 192.168.10.80 https://192.168.61.100:2379,https://192.168.61.101:2379,https://192.168.61.102:2379

#检查进程是否启动成功
ps aux | grep kube-apiserver

netstat -natp | grep 6443   #安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证


#启动 scheduler 服务
cd /opt/k8s/
./scheduler.sh
ps aux | grep kube-scheduler

#启动 controller-manager 服务
./controller-manager.sh
ps aux | grep kube-controller-manager

 

 

#生成kubectl连接集群的kubeconfig文件
./admin.sh

#通过kubectl工具查看当前集群组件状态
kubectl get cs
NAME                 STATUS    MESSAGE             ERROR
controller-manager   Healthy   ok                  
scheduler            Healthy   ok                  
etcd-2               Healthy   {"health":"true"}   
etcd-1               Healthy   {"health":"true"}   
etcd-0               Healthy   {"health":"true"}  

#查看版本信息
kubectl version

 

 

2.6 部署Node组件【worker node】

#在所有 node 节点上操作
#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

#上传 node.zip 到 /opt 目录中,解压 node.zip 压缩包,获得kubelet.sh、proxy.sh
cd /opt/
unzip node.zip
chmod +x kubelet.sh proxy.sh

#在 master01 节点上操作
#把 kubelet、kube-proxy 拷贝到 node 节点
cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.61.101:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.61.102:/opt/kubernetes/bin/

#上传kubeconfig.sh文件到/opt/k8s/kubeconfig目录中,生成kubelet初次加入集群引导kubeconfig文件和kube-proxy.kubeconfig文件
#kubeconfig 文件包含集群参数(CA 证书、API Server 地址),客户端参数(上面生成的证书和私钥),集群 context 上下文参数(集群名称、用户名)。Kubenetes 组件(如 kubelet、kube-proxy)通过启动时指定不同的 kubeconfig 文件可以切换到不同的集群,连接到 apiserver。
mkdir /opt/k8s/kubeconfig

cd /opt/k8s/kubeconfig
chmod +x kubeconfig.sh
./kubeconfig.sh 192.168.61.100 /opt/k8s/k8s-cert/

#把配置文件 bootstrap.kubeconfig、kube-proxy.kubeconfig 拷贝到 node 节点
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.61.101:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.61.102:/opt/kubernetes/cfg/

#RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书
kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap

若执行失败,可先给kubectl绑定默认cluster-admin管理员集群角色,授权集群操作权限
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

 

  • kubelet 采用 TLS Bootstrapping 机制,自动完成到 kube-apiserver 的注册,在 node 节点量较大或者后期自动扩容时非常有用。
  • Master apiserver 启用 TLS 认证后,node 节点 kubelet 组件想要加入集群,必须使用CA签发的有效证书才能与 apiserver 通信,当 node 节点很多时,签署证书是一件很繁琐的事情。因此 Kubernetes 引入了 TLS bootstraping 机制来自动颁发客户端证书,kubelet 会以一个低权限用户自动向 apiserver 申请证书,kubelet 的证书由 apiserver 动态签署。
  • kubelet 首次启动通过加载 bootstrap.kubeconfig 中的用户 Token 和 apiserver CA 证书发起首次 CSR 请求,这个 Token 被预先内置在 apiserver 节点的 token.csv 中,其身份为 kubelet-bootstrap 用户和 system:kubelet-bootstrap 用户组;想要首次 CSR 请求能成功(即不会被 apiserver 401 拒绝),则需要先创建一个 ClusterRoleBinding,将 kubelet-bootstrap 用户和 system:node-bootstrapper 内置 ClusterRole 绑定(通过 kubectl get clusterroles 可查询),使其能够发起 CSR 认证请求。
  • TLS bootstrapping 时的证书实际是由 kube-controller-manager 组件来签署的,也就是说证书有效期是 kube-controller-manager 组件控制的;kube-controller-manager 组件提供了一个 --experimental-cluster-signing-duration 参数来设置签署的证书有效时间;默认为 8760h0m0s,将其改为 87600h0m0s,即 10 年后再进行 TLS bootstrapping 签署证书即可。
  • 也就是说 kubelet 首次访问 API Server 时,是使用 token 做认证,通过后,Controller Manager 会为 kubelet 生成一个证书,以后的访问都是用证书做认证了。
#在 node01 节点上操作
#启动 kubelet 服务
cd /opt/
./kubelet.sh 192.168.61.101
ps aux | grep kubelet

#在 master01 节点上操作,通过 CSR 请求
#检查到 node01 节点的 kubelet 发起的 CSR 请求,Pending 表示等待集群给该节点签发证书
kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   12s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending

#通过 CSR 请求
kubectl certificate approve node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE

#Approved,Issued 表示已授权 CSR 请求并签发证书
kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   2m5s kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#查看节点,由于网络插件还没有部署,节点会没有准备就绪 NotReady
kubectl get node
NAME            STATUS     ROLES    AGE    VERSION
192.168.61.101   NotReady   <none>   108s   v1.20.11

#在 node01 节点上操作
#加载 ip_vs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

#启动proxy服务
cd /opt/
./proxy.sh 192.168.61.101
ps aux | grep kube-proxy

 

 

2.7 部署CNI网络组件

K8S 中 Pod 网络通信:
①Pod 内容器与容器之间的通信

  • 在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命名空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

②同一个 Node 内 Pod 之间的通信

  • 每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0/cni0 网桥,网段相同,所以它们之间可以直接通信。

③不同 Node 上 Pod 之间的通信

  • Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。
  • 要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

Overlay Network:

  • 叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来。
  • 通过Overlay技术(可以理解成隧道技术),在原始报文外再包一层四层协议(UDP协议),通过主机网络进行路由转发。这种方式性能有一定损耗,主要体现在对原始报文的修改。目前Overlay主要采用VXLAN。

VXLAN:

  • 将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

①部署 flannel

  • Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。
  • Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 UDP、VXLAN、Host-gw 3种数据转发方式。

Flannel UDP 模式的工作原理:

  • 数据从主机 A 上 Pod 的源容器中发出后,经由所在主机的 docker0/cni0 网络接口转发到 flannel0 接口,flanneld 服务监听在 flannel0 虚拟网卡的另外一端。
  • Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 A 的 flanneld 服务将原本的数据内容封装到 UDP 报文中, 根据自己的路由表通过物理网卡投递给目的节点主机 B 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel0 接口, 之后被转发到目的主机的 docker0/cni0 网桥,最后就像本机容器通信一样由 docker0/cni0 转发到目标容器。

ETCD 之 Flannel 提供说明:

  • 存储管理Flannel可分配的IP地址段资源
  • 监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表
  • 由于 UDP 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 VXLAN 模式差。

VXLAN 模式:

  • VXLAN 模式使用比较简单,flannel 会在各节点生成一个 flannel.1 的 VXLAN 网卡(VTEP设备,负责 VXLAN 封装和解封装)。
  • VXLAN 模式下封包与解包的工作是由内核进行的。flannel 不转发数据,仅动态设置 ARP 表和 MAC 表项。
  • UDP 模式的 flannel0 网卡是三层转发,使用 flannel0 时在物理网络之上构建三层网络,属于 ip in udp ;VXLAN 模式是二层实现,overlay 是数据帧,属于 mac in udp 。

Flannel VXLAN 模式跨主机的工作原理:
1.数据帧从主机 A 上 Pod 的源容器中发出后,经由所在主机的 docker0/cni0 网络接口转发到 flannel.1 接口
2.flannel.1 收到数据帧后添加 VXLAN 头部,封装在 UDP 报文中
3.主机 A 通过物理网卡发送封包到主机 B 的物理网卡中
4.主机 B 的物理网卡再通过 VXLAN 默认端口 4789 转发到 flannel.1 接口进行解封装
5.解封装以后,内核将数据帧发送到 cni0,最后由 cni0 发送到桥接到此接口的容器 B 中。

#在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar

mkdir /opt/cni/bin -p
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

#在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -n kube-system
NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-hjtc7   1/1     Running   0          7s

kubectl get nodes
NAME            STATUS   ROLES    AGE   VERSION
192.168.80.11   Ready    <none>   81m   v1.20.11

 

②部署 Calico

k8s 组网方案对比:
①flannel方案

  • 需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

②calico方案

  • Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发。
  • 采用直接路由的方式,这种方式性能损耗最低,不需要修改报文数据,但是如果网络比较复杂场景下,路由表会很复杂,对运维同事提出了较高的要求。

Calico 主要由三个部分组成:

  • Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。
  • Felix:负责维护宿主机上的路由规则、FIB转发信息库等。
  • BIRD:负责分发路由规则,类似路由器。
  • Confd:配置管理组件。

Calico 工作原理:

  • Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则, 用于接收传入的 IP 包。
  • 有了这样的 veth pair 设备以后,容器发出的 IP 包就会通过 veth pair 设备到达宿主机,然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。
  • 这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。
  • calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由, 这些节点我们叫做 BGP Peer。

目前比较常用的CNI网络组件是flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

#在 master01 节点上操作
#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
vim calico.yaml
#修改里面定义 Pod 的网络(CALICO_IPV4POOL_CIDR),需与前面 kube-controller-manager 配置文件指定的 cluster-cidr 网段一样
    - name: CALICO_IPV4POOL_CIDR
      value: "10.244.0.0/16"        #Calico 默认使用的网段为 192.168.0.0/16
  
kubectl apply -f calico.yaml

kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-4h8vk   1/1     Running   0          58s
calico-node-nsm6b                          1/1     Running   0          58s
calico-node-tdt8v                          1/1     Running   0          58s

#等 Calico Pod 都 Running,节点也会准备就绪
kubectl get nodes

 

 

2.8 部署 CoreDNS

  • CoreDNS:可以为集群中的 service 资源创建一个域名 与 IP 的对应关系解析
#在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

#在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yaml

kubectl get pods -n kube-system 
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

#DNS 解析测试
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

 

 

---------- master02 节点部署 ----------
#从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@192.168.61.200:/opt/
scp -r /opt/kubernetes/ root@192.168.61.200:/opt
scp -r /root/.kube root@192.168.61.200:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.61.200:/usr/lib/systemd/system/

#修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.61.100:2379,https://192.168.61.101:2379,https://192.168.61.102:2379 \
--bind-address=192.168.61.200 \                #修改
--secure-port=6443 \
--advertise-address=192.168.61.200 \            #修改
......

#在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

#查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide            #-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名
此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

 

2.9 负载均衡部署

  •  配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)
##### 在lb01、lb02节点上操作 ##### 
#配置nginx的官方在线yum源,配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF

yum install nginx -y

#修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口
vim /etc/nginx/nginx.conf
events {
    worker_connections  1024;
}

#添加
stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
    
    access_log  /var/log/nginx/k8s-access.log  main;

    upstream k8s-apiserver {
        server 192.168.10.80:6443;
        server 192.168.10.20:6443;
    }
    server {
        listen 6443;
        proxy_pass k8s-apiserver;
    }
}

http {
......

 

 

#检查配置文件语法
nginx -t   

#启动nginx服务,查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 

 

#部署keepalived服务
yum install keepalived -y

#修改keepalived配置文件
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {
   # 接收邮件地址
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   # 邮件发送地址
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER    #lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}

#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"    #指定检查nginx存活的脚本路径
}

vrrp_instance VI_1 {
    state MASTER            #lb01节点的为 MASTER,lb02节点的为 BACKUP
    interface ens33            #指定网卡名称 ens33
    virtual_router_id 51    #指定vrid,两个节点要一致
    priority 100            #lb01节点的为 100,lb02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.10.100/24    #指定 VIP
    }
    track_script {
        check_nginx            #指定vrrp_script配置的脚本
    }
}

 

 

#创建nginx状态检查脚本 
vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID,即脚本运行的当前进程ID号
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")

if [ "$count" -eq 0 ];then
    systemctl stop keepalived
fi


chmod +x /etc/nginx/check_nginx.sh

 

 

#启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)
systemctl start keepalived
systemctl enable keepalived
ip a                #查看VIP是否生成

#修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.10.100:6443
                      
vim kubelet.kubeconfig
server: https://192.168.10.100:6443
                        
vim kube-proxy.kubeconfig
server: https://192.168.10.100:6443

#重启kubelet和kube-proxy服务
systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态
netstat -natp | grep nginx

 

 

##### 在 master01 节点上操作 ##### 
#测试创建pod
kubectl run nginx --image=nginx

#查看Pod的状态信息
kubectl get pods
NAME                    READY   STATUS              RESTARTS   AGE
nginx-dbddb74b8-nf9sk   0/1     ContainerCreating   0          33s   #正在创建中

kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
nginx-dbddb74b8-nf9sk   1/1     Running   0          80s              #创建完成,运行中

kubectl get pods -o wide
NAME                    READY   STATUS    RESTARTS   AGE   IP            NODE            NOMINATED NODE
nginx-dbddb74b8-26r9l   1/1     Running   0          10m   172.17.36.2   192.168.80.15   <none>
#READY为1/1,表示这个Pod中有1个容器

#在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问
curl 172.17.36.2

#这时在master01节点上查看nginx日志
kubectl logs nginx-dbddb74b8-nf9sk

 

2.10 部署 Dashboard

  • 仪表板是基于Web的Kubernetes用户界面。
  • 您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。
  • 您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如deployment,job,daemonset等)。
  • 例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。
#在 master01 节点上操作
#上传 recommended.yaml 文件到 /opt/k8s 目录中
cd /opt/k8s
vim recommended.yaml
#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30001     #添加
  type: NodePort          #添加
  selector:
    k8s-app: kubernetes-dashboard

kubectl apply -f recommended.yaml

#创建service account并绑定默认cluster-admin管理员集群角色
kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

#使用输出的token登录Dashboard
https://NodeIP:30001

 

标签:opt,k8s,二进制,192.168,etcd,K8S,安装,节点,kube
From: https://www.cnblogs.com/suoluo212/p/17103124.html

相关文章

  • Azure Kinect DK相机环境安装(空linux和jetson)
    官网:https://learn.microsoft.com/zh-cn/azure/kinect-dk/sensor-sdk-download#linux-installation-instructions 环境:1.配置 Microsoft的包存储库。2.下......
  • K8S-kubeadm部署
    一.部署环境master(2C/4G,cpu核心数要求大于2)192.168.61.100docker、kubeadm、kubelet、kubectl、flannelnode01(2C/2G)192.16......
  • K8S-声明式-yaml文件
    一.yaml概述Kubernetes支持YAML和JSON格式管理资源对象JSON格式:主要用于api接口之间消息的传递YAML格式:用于配置和管理,YAML是一种简洁的非标记性语言,内容格......
  • K8S-kubectl
    一.kubectl资源管理1.1资源管理方法:陈述式和声明式Kubectl是Kubernetes的命令行工具,它可以用来管理和操作Kubernetes集群中的资源。在Kubectl中,有两种常见的资源管理方......
  • 基于二进制编码遗传优化的混合发电系统配置优化问题求解
    up目录一、理论基础二、核心程序三、测试结果一、理论基础首先,传统的遗传优化算法,其标准的优化过程如下所示:步骤一:根据所需要处理的问题特点,选择问题解对应的编码,并......
  • Kubeadm 安装
    Kubeadm安装需要的的机器:192.168.111.25master01192.168.111.21node01192.168.111.23node02环境准备:所有节点,关闭防火墙规则,关闭selinux,关闭swap交换systemctlstopfi......
  • K8S二进制安装
    K8S二进制安装192.168.111.20master01192.168.111.21master02192.168.111.22node01192.168.111.23node02192.168.111.20节点1192.168.111.22节点2192.168.111.23节点31......
  • k8s安装2
    [root@master01~]#cd/opt/k8s/kubernetes/server/bin[root@master01bin]#scpkubeletkube-proxyroot@192.168.111.21:/opt/kubernetes/[root@master01bin]#cd......
  • Python3.11 修改 pip 安装包安装位置
    操作步骤修改pip安装路径命令行输入pipconfigsetglobal.targetE:\DevEnv\Repository\Python\site-packages来修改pip安装包路径或者命令行输入py-mpipcon......
  • 制作ubuntu启动U盘,并安装ubuntu
    四步:1.将U盘格式化,成NTFS格式2.打开ss,点击文件,找到我们下载的ubuntu镜像3.点击启动,写入磁盘映像4.点击写入 问题:我U盘容量很大,但是还是......