首页 > 其他分享 >CodeVs天梯钻石Diamond题解

CodeVs天梯钻石Diamond题解

时间:2023-02-14 11:03:30浏览次数:65  
标签:Diamond return int 题解 cin ++ maxn include CodeVs



title: CodeVs天梯之Diamond
date: 2017-12-28
tags:

  • 天梯
  • CodesVs
    categories: OI

CodeVs刷题攻略之Diamond

2018.1.14 By gwj1139177410

0x01最短路

  1. ​Car的旅行路线​
//1.计算几何求第四点坐标, 方法很多
//2.虚点,到A城市的四个机场边权都为0
//3.SPFA跑最短路
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<vector>
#include<queue>
using namespace std;

//Timu
double n, m, a, b;
double x[500], y[500], t[110];

//Graph
struct Edge{
int to; double w;
Edge(int x, double y):to(x),w(y){}
};
vector<Edge>G[500];
void insert(int u,int v,double w){
G[u].push_back(Edge(v,w));
}
double distant(double nx,double ny,double mx,double my){
return sqrt((nx-mx)*(nx-mx)+(ny-my)*(ny-my));
}

//spfa
queue<int>q;
int vis[500];
double dis[500];
void spfa(){
while(!q.empty()){
int u = q.front(); q.pop(); vis[u] = 0;
for(int i = 0; i < G[u].size(); i++){
int v = G[u][i].to;
if(dis[u]+G[u][i].w<dis[v]){
dis[v] = dis[u]+G[u][i].w;
if(!vis[v]){
q.push(v);
vis[v] = 1;
}
}
}
}
}

int main(){
int T; cin>>T;
while(T--){
//1.初始化
memset(x,0,sizeof x);
memset(y,0,sizeof y);
memset(t,0,sizeof t);
memset(vis,0,sizeof vis);
//2.datein
cin>>n>>m>>a>>b;
for(int i = 0; i < n; i++){
for(int j = 1; j < 4; j++)
cin>>x[i*4+j]>>y[i*4+j];
cin>>t[i+1];
//point4,
double l1=distant(x[i*4+1],y[i*4+1],x[i*4+2],y[i*4+2]);
double l2=distant(x[i*4+1],y[i*4+1],x[i*4+3],y[i*4+3]);
double l3=distant(x[i*4+2],y[i*4+2],x[i*4+3],y[i*4+3]);
double l=max(l1,max(l2,l3));//三条里最常的就是对角线,然后中点坐标得到第4点
if(l1 == l)x[i*4+4]=(x[i*4+1]+x[i*4+2])-x[i*4+3], y[i*4+4]=(y[i*4+1]+y[i*4+2])-y[i*4+3];
if(l2 == l)x[i*4+4]=(x[i*4+1]+x[i*4+3])-x[i*4+2], y[i*4+4]=(y[i*4+1]+y[i*4+3])-y[i*4+2];
if(l3 == l)x[i*4+4]=(x[i*4+2]+x[i*4+3])-x[i*4+1], y[i*4+4]=(y[i*4+2]+y[i*4+3])-y[i*4+1];
}
//3.预处理,建图(把所有机场连起来就好啦啦啦~)
n *= 4;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
if(i == j)continue;
int c1 = (i-1)/4+1, c2 = (j-1)/4+1;
if(c1 == c2){
double w = distant(x[i],y[i],x[j],y[j])*t[c1];
insert(i,j,w);
insert(j,i,w);
}else{
double w = distant(x[i],y[i],x[j],y[j])*m;
insert(i,j,w);
insert(j,i,w);
}
}
}
//4.run
for(int i = 1; i <= n; i++)dis[i] = 1e9+1;
for(int i = (a-1)*4+1; i <= a*4; i++){
q.push(i);
dis[i] = 0;
vis[i] = 1;
}
spfa();
//5.dateout
double ans = 1e9;
for(int i = (b-1)*4+1; i <= 4*b; i++)ans = min(ans, dis[i]);
printf("%.1lf\n",ans);
}
return 0;
}
  1. ​多源最短路​
//Floyd-wallshall模板
#include<iostream>
using namespace std;
int n, e[110][110];
int main(){
ios::sync_with_stdio(false);
cin>>n;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
cin>>e[i][j];
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
if(e[i][k]+e[k][j]<e[i][j])
e[i][j] = e[i][k]+e[k][j];
int T; cin>>T;
while(T--){
int a, b;
cin>>a>>b;
cout<<e[a][b]<<"\n";
}
return 0;
}
  1. ​回家​
//数据太小, Floyd一番水
#include<iostream>
#include<algorithm>
using namespace std;
int n = 60, m;
int e[1010][1010], vis[1010];
int main(){
cin>>m;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
e[i][j] = i==j ? 0 : 0xffffff;
for(int i = 0; i < m; i++){
char a, b; int w; cin>>a>>b>>w;
int x = a-'A', y = b-'A';
if(x>=0 && x<25)vis[x] = 1;
if(y>=0 && y<25)vis[y] = 1;
//bugs数据可能有覆盖
e[x][y] = min(e[x][y], w);
e[y][x] = min(e[y][x], w);
}
for(int k = 0; k < n; k++)
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
e[i][j] = min(e[i][j], e[i][k]+e[j][k]);
int ans2 = 0xffffff, ans1;
for(int i = 0; i < n; i++)if(vis[i] && e[i][(int)'Z'-'A']<ans2){
ans2 = e[i][(int)'Z'-'A'];
ans1 = i;
}
cout<<(char)(ans1+'A')<<" "<<ans2;
return 0;
}
//标程Dijkstra
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

//T
int n = 60, m, vis[1010];

//Graph
struct Edge{
int v, w;
Edge(int v, int w):v(v),w(w){}
};
vector<Edge>G[70];

//Dijkstra
int dis[70], book[70], s = (int)'Z'-'A';
void Dijkstra(){
for(int i = 0; i < n; i++)dis[i] = 0xffffff;
for(int i = 0; i < G[s].size(); i++)//bugs数据可能有覆盖
dis[G[s][i].v] = min(dis[G[s][i].v],G[s][i].w);
dis[s] = 0; book[s] = 1;
for(int i = 0; i < n; i++){
int v, w=0xffffff;
for(int j = 0; j < n; j++)
if(!book[j] && dis[j]<w)
w = dis[v=j];
book[v] = 1;
for(int j = 0; j < G[v].size(); j++)
dis[G[v][j].v] = min(dis[G[v][j].v], w+G[v][j].w);
}
}

int main(){
cin>>m;
for(int i = 1; i <= m; i++){
char a, b; int w; cin>>a>>b>>w;
int x = a-'A', y = b-'A';
if(x>=0 && x<25)vis[x] = 1;
if(y>=0 && y<25)vis[y] = 1;
G[x].push_back(Edge(y,w));
G[y].push_back(Edge(x,w));
}
Dijkstra();
int v, w=0xffffff;
for(int i = 0; i < n; i++)
if(vis[i] && dis[i]<w)
w = dis[v=i];
cout<<(char)(v+'A')<<" "<<w<<"\n";
return 0;
}

0x02启发式搜索

  1. ​靶形数独​
//(如果你玩数独会怎么填呢)......启发式:把能确定的(剩余少的)先填上
#include<iostream>
using namespace std;

const int score[10][10]={
{0,0,0,0,0,0,0,0,0,0},
{0,6,6,6,6,6,6,6,6,6},
{0,6,7,7,7,7,7,7,7,6},
{0,6,7,8,8,8,8,8,7,6},
{0,6,7,8,9,9,9,8,7,6},
{0,6,7,8,9,10,9,8,7,6},
{0,6,7,8,9,9,9,8,7,6},
{0,6,7,8,8,8,8,8,7,6},
{0,6,7,7,7,7,7,7,7,6},
{0,6,6,6,6,6,6,6,6,6}
};

//r[i][j],第i行第j个数是否填过...row_cnt[i],第i行填了几个数
int a[11][11], row[11][11], col[11][11], area[11][11];
int row_cnt[11], col_cnt[11], cnt, ans=-1;
//得到(r,c)是第几个区域的
inline int id(int r, int c){ return (r-1)/3*3+(c-1)/3+1; }
//计算当前得分
inline int calc(){
int sum = 0;
for(int i = 1; i <= 9; i++)
for(int j = 1; j <= 9; j++)
sum += score[i][j]*a[i][j];
return sum;
}

void dfs(int r, int c, int cc){
if(cc == 81){
ans = max(ans, calc());
return ;
}else for(int i = 1; i <= 9; i++){//尝试每个填数
if(row[r][i]||col[c][i]||area[id(r,c)][i]) continue;
row[r][i] = col[c][i] = area[id(r,c)][i] = 1;
row_cnt[r]++; col_cnt[c]++;
a[r][c] = i;
//找没有填的最少的行和列
int tr, vr=-1, tc, vc=-1;
for(int j = 1; j <= 9; j++)
if(row_cnt[j]>vr && row_cnt[j]!=9)
vr = row_cnt[tr=j];
for(int j = 1; j <= 9; j++)
if(col_cnt[j]>vc && !a[tr][j])//(r,c)未填数
vc = col_cnt[tc=j];
dfs(tr,tc,cc+1);
row[r][i] = col[c][i] = area[id(r,c)][i] = 0;
row_cnt[r]--; col_cnt[c]--;
a[r][c] = 0;
}
}

int main(){
//datein
for(int i = 1; i <= 9; i++){
for(int j = 1; j <= 9; j++){
cin>>a[i][j];
if(a[i][j]){
//更新初始数据
row[i][a[i][j]] = col[j][a[i][j]] = area[id(i,j)][a[i][j]] = 1;
row_cnt[i]++; col_cnt[j]++; cnt++;
}
}
}
//找没有填的最少的行和列。
int tr, vr=-1, tc, vc=-1;
for(int i = 1; i <= 9; i++)
if(row_cnt[i]>vr && row_cnt[i]!=9)
vr = row_cnt[tr=i];
for(int i = 1; i <= 9; i++)
if(col_cnt[i]>vc && !a[tr][i])
vc = col_cnt[tc=i];
//dfs
dfs(tr,tc,cnt);
cout<<ans<<"\n";
return 0;
}
  1. ​八数码难题​
#include<iostream>
#include<algorithm>
#include<queue>
#include<string>
#include<map>
using namespace std;
const int dx[] = {0,0,-1,1};
const int dy[] = {1,-1,0,0};
string goal = "123804765", s;
map<string,int>ma;
int main(){
cin>>s;
queue<string>q;
q.push(s);
while(!q.empty()){
string t = q.front(); q.pop();
if(t == goal)break;
int z;
for(z = 0; z < 9; z++)
if(t[z]=='0')break;
int x=z/3, y=z%3;
for(int i = 0; i < 4; i++){
int nx=x+dx[i], ny=y+dy[i], nz=nx*3+ny;
if(nx<0||nx>=3||ny<0||ny>=3)continue;
string tt = t;
swap(tt[z],tt[nz]);
if(!ma.count(tt)){
q.push(tt);
ma[tt] = ma[t]+1;
}
}
}
cout<<ma[goal]<<"\n";
return 0;
}

0x03线段树入门

  1. ​线段树练习​
#include<iostream>
using namespace std;
const int maxn = 100010;
#define lch p<<1
#define rch p<<1|1
struct node{
int val, addmark;
}sgt[maxn<<2];
void pushdown(int p, int l, int r){
if(!sgt[p].addmark)return;
int t = sgt[p].addmark, m=l+r>>1;
sgt[lch].addmark += t;
sgt[rch].addmark += t;
sgt[lch].val += t*(m-l+1);
sgt[rch].val += t*(r-m);
sgt[p].addmark = 0;
}
void update(int p, int l, int r, int ql, int qr, int v){
if(l>qr || r<ql)return ;
if(ql<=l && r<=qr){
sgt[p].val += v*(r-l+1);
sgt[p].addmark += v;
return ;
}
int m = l+r>>1;
if(ql<=m)update(lch,l,m,ql,qr,v);
if(qr>m)update(rch,m+1,r,ql,qr,v);
sgt[p].val = sgt[lch].val+sgt[rch].val;
}
int query(int p, int l, int r, int ql, int qr){
if(ql<=l && r<=qr)return sgt[p].val;
pushdown(p,l,r);
int m = l+r>>1, ans = 0;
if(ql<=m)ans += query(lch,l,m,ql,qr);
if(qr>m)ans += query(rch,m+1,r,ql,qr);
return ans;
}
int main(){
int n, m;
cin>>n;
for(int i = 1; i <= n; i++){
int x; cin>>x; update(1,1,n,i,i,x);
}
cin>>m;
for(int i = 1; i <= m; i++){
int op, x, y;
cin>>op>>x>>y;
if(op == 1){
update(1,1,n,x,x,y);
}else{
cout<<query(1,1,n,x,y)<<"\n";
}
}
return 0;
}
  1. ​线段树练习 2​
#include<iostream>
using namespace std;
const int maxn = 100010;
#define lch p<<1
#define rch p<<1|1
struct node{
int val, addmark;
}sgt[maxn<<2];
void pushdown(int p, int l, int r){
if(!sgt[p].addmark)return;
int t = sgt[p].addmark, m=l+r>>1;
sgt[lch].addmark += t;
sgt[rch].addmark += t;
sgt[lch].val += t*(m-l+1);
sgt[rch].val += t*(r-m);
sgt[p].addmark = 0;
}
void update(int p, int l, int r, int ql, int qr, int v){
if(l>qr || r<ql)return ;
if(ql<=l && r<=qr){
sgt[p].val += v*(r-l+1);
sgt[p].addmark += v;
return ;
}
int m = l+r>>1;
if(ql<=m)update(lch,l,m,ql,qr,v);
if(qr>m)update(rch,m+1,r,ql,qr,v);
sgt[p].val = sgt[lch].val+sgt[rch].val;
}
int query(int p, int l, int r, int ql, int qr){
if(ql<=l && r<=qr)return sgt[p].val;
pushdown(p,l,r);
int m = l+r>>1, ans = 0;
if(ql<=m)ans += query(lch,l,m,ql,qr);
if(qr>m)ans += query(rch,m+1,r,ql,qr);
return ans;
}
int main(){
int n, m;
cin>>n;
for(int i = 1; i <= n; i++){
int x; cin>>x; update(1,1,n,i,i,x);
}
cin>>m;
for(int i = 1; i <= m; i++){
int op, x, y, k;
cin>>op;
if(op == 1){
cin>>x>>y>>k;
update(1,1,n,x,y,k);
}else{
cin>>x;
cout<<query(1,1,n,x,x)<<"\n";
}
}
return 0;
}
  1. ​约瑟夫问题​
//好玩么
#include<iostream>
using namespace std;
int n, m, a[30010], r, p;
int main(){
cin>>n>>m;
for(int i = 1; i <= n; i++)a[i]=i;
r = n; p = 1;
while(r>1){
p = (p+m-1)%r;
if(p==0)p=r;
cout<<a[p]<<" ";
for(int i = p; i <= r-1; i++)a[i]=a[i+1];
r--;
}
cout<<a[1]<<"\n";
return 0;
}

0x04并查集

  1. ​舒适的路线​
//类MST,对于每条边把他作为_max且作为常数,然后枚举所有比他小的边直到联通,维护全局最大值
#include<iostream>
#include<algorithm>
using namespace std;
const int inf = 0xfffffff;
int n, m, st, ed, _max=inf, _min=1;
int gcd(int a, int b){ return !b?a:gcd(b,a%b);}
//graph
struct edge{ int u, v, w;}e[5010];
bool cmp(edge a, edge b){ return a.w<b.w; }
//UnionFindSet
int fa[510];
void init(int n){ for(int i = 1; i <= n; i++) fa[i]=i; }
int find(int x){ return x==fa[x]?x:fa[x]=find(fa[x]);}
void merge(int x, int y){ if(find(x)==find(y))return ; fa[find(x)]=find(y); }
//main
int main(){
cin>>n>>m;
for(int i = 1; i <= m; i++)
cin>>e[i].u>>e[i].v>>e[i].w;
cin>>st>>ed;
sort(e+1,e+m+1, cmp);
for(int i = 1; i <= m; i++){
init(n);
for(int j = i; j >= 1; j--){
merge(e[j].u, e[j].v);
if(find(st)==find(ed)){
if((e[i].w*1.0/e[j].w) < (_max*1.0/_min)){
_max = e[i].w;
_min = e[j].w;
}
break;
}
}
}
if(_max==inf && _min==1){ cout<<"IMPOSSIBLE\n"; return 0;}
int r = gcd(_max, _min);
_max /= r;
_min /= r;
if(_min == 1)cout<<_max<<"\n";
else cout<<_max<<"/"<<_min<<"\n";
return 0;
}
  1. ​关押罪犯​
//并查集及补集
//凡是与i+n节点在同一个集合里的,都是不能与i在同一个集合里的。
#include<iostream>
#include<algorithm>
using namespace std;
struct Edge{ int u, v, w; }e[100010];
bool cmp(Edge a, Edge b){ return a.w>b.w; }
int fa[20010<<1];
void init(int n){ for(int i = 1; i <= n; i++)fa[i]=i; }
int find(int x){ return x==fa[x]?x:fa[x]=find(fa[x]); }
void merge(int x, int y){ x=find(x);y=find(y);if(x!=y)fa[x]=y;}
int main(){
int n, m;
cin>>n>>m;
for(int i = 1; i <= m; i++)
cin>>e[i].u>>e[i].v>>e[i].w;
sort(e+1,e+m+1,cmp);
init(n<<1);
for(int i = 1; i <= m; i++){
int u = e[i].u, v = e[i].v;
if(find(u) == find(v)){
cout<<e[i].w<<"\n"; return 0;
}
merge(u+n, v);
merge(v+n, u);
}
cout<<0<<"\n";//....
return 0;
}
  1. ​家族​
//并查集模板
#include<iostream>
using namespace std;
int fa[5010];
void init(int n){for(int i = 1; i <= n; i++)fa[i]=i;}
int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
void merge(int x, int y){x=find(x);y=find(y);if(x!=y)fa[x]=y;}
int main(){
int n, m, p;
cin>>n>>m>>p;
init(n);
for(int i = 1; i <= m; i++){
int a, b; cin>>a>>b; merge(a,b);
}
for(int i = 1; i <= p; i++){
int a, b; cin>>a>>b;
if(find(a)==find(b))cout<<"Yes\n";
else cout<<"No\n";
}
return 0;
}
  1. ​食物链​
//本题思路:把x作为a,b,c三种动物分别加入,维护三个集合的关系。
//并查集及补集
//其中i用来连接与i同类的,i+n用来连接能吃i的,i+2*n用来连接i能吃的。
//具体来说,凡是与i+n节点在同一个集合里的,都是被i吃的动物。
#include<iostream>
#include<algorithm>
using namespace std;
int ans = 0;
int fa[50010*3];
void init(int n){ for(int i = 1; i <= n; i++)fa[i]=i; }
int find(int x){ return x==fa[x]?x:fa[x]=find(fa[x]); }
void merge(int x, int y){ x=find(x);y=find(y);if(x!=y)fa[x]=y;}
int some(int x, int y){ return find(x)==find(y); }
int main(){
int n, m;
cin>>n>>m;
init(n*3);
for(int i = 1; i <= m; i++){
int op, x, y;
cin>>op>>x>>y;
if(x>n||y>n){ans++;continue;}//2)当前的话中X或Y比N大,就是假话
if(op==2&&x==y){ans++;continue;}//3)当前的话表示X吃X,就是假话
if(op==1){
if(some(x,y+n)||some(y,x+n))ans++;//如果x吃y或者y吃x,就不是同类
else{
merge(x,y);//x和y是同类
merge(x+n,y+n);//能吃x和y的也是同类
merge(x+n*2,y+n*2);//x和y能吃的也是同类
}
}else{
if(some(x,y)||some(y,x+n))ans++;//如果x和y是同类或者y吃x
else{
merge(x,y+n);//x和吃y的连起来
merge(x+n,y+n*2);//能吃x的和被y吃的连起来(三种动物之间的关系啊)
merge(x+n*2,y);//x能吃的和y连起来
}
}
}
cout<<ans<<"\n";
return 0;
}

0x05堆

  1. ​地鼠游戏​
//贪心:优先打价值最大的(如果能打的话)
#include<iostream>
#include<algorithm>
using namespace std;
struct d{ int t, w; }a[110];
bool cmp(d a, d b){ return a.w>=b.w; }
int n, book[110], ans;
int main(){
cin>>n;
for(int i = 0; i < n; i++)cin>>a[i].t;
for(int i = 0; i < n; i++)cin>>a[i].w;
sort(a, a+n, cmp);
for(int i = 0; i < n; i++)
for(int j = a[i].t; j >= 1; j--)
if(!book[j]){ ans += a[i].w; book[j] = 1; break; }
cout<<ans;
return 0;
}
  1. ​合并果子​
//STL默认大根堆
#include<iostream>
#include<queue>
using namespace std;
int n, ans;
priority_queue<int,vector<int>,greater<int> >q;
int main(){
cin>>n;
for(int i = 1; i <= n; i++){
int x; cin>>x; q.push(x);
}
while(q.size()!=1){
int a = q.top(); q.pop();
int b = q.top(); q.pop();
ans += a+b;
q.push(a+b);
}
cout<<ans<<"\n";
return 0;
}
  1. ​最小的N个和​
//动态维护大根堆,贪心减少入队元素个数
//以及,拓展参见刘汝佳蓝书P189,K路归并
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = 100010;
int n, a[maxn], b[maxn];
//q为答案的n个元素。
priority_queue<int>q;
//递归输出
void print(){
if(q.empty())return ;
int t = q.top(); q.pop();
print();
cout<<t<<" ";
}
int main(){
cin>>n;
for(int i = 1; i <= n; i++)cin>>a[i];
for(int i = 1; i <= n; i++)cin>>b[i];
//step1:排序,让序列单调,后面用单调性减少状态数
sort(a+1,a+n+1);
sort(b+1,b+n+1);
//step2:随便加n个元素作为初始值
for(int i = 1; i <= n; i++){
q.push(a[1]+b[i]);
}
for(int i = 2; i <= n; i++){
if(a[i]+b[1]>=q.top())break;//step3因为单调,所以后面的a[i]+b[1]只会更大。
for(int j = 1; j <= n; j++){
if(a[i]+b[j]>=q.top())break;//step4:因为单调,所以后面的肯定会更大。
//step5:如果没有break,则当前元素比答案中的最大值要大,更新答案。
q.pop();
q.push(a[i]+b[j]);
}
}
//step6:此时队列中剩下的n各元素就是最小值
print();
return 0;
}

0x06高精度++

  1. ​高精度练习之除法​
//高精除高精,模板
//思路:模拟减法,a每次减去b的10^n倍可以提高效率
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
using namespace std;
const int maxn = 510;
int a[maxn], b[maxn], c[maxn], t[maxn];
//比较x和y的大小,x>y时返回1,x==y返回0,x<y返回-1
int compare(int x[], int y[]){
if(x[0] < y[0])return -1;
if(x[0] > y[0])return 1;
for(int i = x[0]; i > 0; i--){ //越后面的位越大啊
if(x[i] < y[i])return -1;
if(x[i] > y[i])return 1;
}
return 0;
}
//y=x*(10^k)
void times(int x[], int y[], int k){
for(int i = 1; i <= x[0]; i++)y[i+k-1] = x[i];
y[0] = x[0]+k-1;
}
int main(){
string s1, s2; cin>>s1>>s2;
a[0] = s1.size(); b[0] = s2.size();
//bugs:a比b小的情况,就是...如果只剩0的话这个商的长度的也会变成0 错误数据:0 100
if(a[0]<b[0]||(a[0]==b[0]&&s1<s2)){ cout<<"0\n"; return 0; }
for(int i = 1; i <= a[0]; i++)a[i] = s1[a[0]-i]-'0';
for(int i = 1; i <= b[0]; i++)b[i] = s2[b[0]-i]-'0';
c[0] = a[0]-b[0]+1;
for(int i = c[0]; i > 0; i--){
memset(t,0,sizeof(t));
times(b,t,i);
while(compare(a,t)>=0){
c[i]++;
//高精减,a=a-t
for(int j = 1; j <= a[0]; j++){
if(a[j] < t[j]){
a[j+1]--;
a[j] += 10;
}
a[j] -= t[j];
}
while(!a[a[0]] && a[0]>1)a[0]--;
}
}
while(!c[c[0]] && c[0]>1)c[0]--;
for(int i = c[0]; i > 0; i--)cout<<c[i];
return 0;
}
  1. ​高精度练习之大整数开根​
//二分答案
#include<iostream>
#include<string>
#include<cstring>
using namespace std;
const int maxn = 1010;
int a[maxn], l[maxn], r[maxn], m[maxn], t[maxn];
//m=l+r>>1
void mid(){
//m = l;
memcpy(m,l,sizeof(l));
//m += r;
m[0] = r[0]+1;
for(int i = 1; i <= r[0]; i++){
m[i] += r[i];
if(m[i]>=10){
m[i] %= 10;
m[i+1]++;
}
}
while(m[0]>1 && m[m[0]]==0)m[0]--;
//m /= 2;
for(int i = m[0]; i >= 1; i--){
if(i > 1)m[i-1]+=m[i]%2*10;
m[i] /= 2;
}
while(m[0]>1 && m[m[0]]==0)m[0]--;
}
//return m*m>a;
bool C(){
//t = 0;
memset(t,0,sizeof(t));
//t = m*m;
for(int i = 1; i <= m[0]; i++)
for(int j = 1; j <= m[0]; j++)
t[i+j-1] += m[i]*m[j];
t[0] = m[0]*2;
for(int i = 1; i <= t[0]; i++){//处理进位
t[i+1] += t[i]/10;
t[i] %= 10;
}
while(t[0]>1 && t[t[0]]==0)t[0]--;
//return t>a;
if(t[0] != a[0])return t[0]>a[0];
for(int i = t[0]; i >= 1; i--)
if(t[i]!=a[i])return t[i]>a[i];
return 0;
}
int main(){
//输入
string s; cin>>s;
a[0] = s.size();
for(int i = 1; i <= a[0]; i++)a[i] = s[a[0]-i]-'0';
//二分
l[0] = 1;
r[0] = a[0]/2+2;
r[r[0]] = 1;
for(int i = 1; i <= 2000; i++){
mid(); //m=l+r>>1;
if(C())memcpy(r,m,sizeof(m));//r=m;
else memcpy(l,m,sizeof(m));//l=m;
}
//输出
for(int i = l[0]; i >= 1; i--)cout<<l[i];
return 0;
}

0x07哈希表

  1. ​元素查找​
#include<iostream>
#include<set>
using namespace std;
set<int>s;
int main(){
int n, m;
cin>>n>>m;
for(int i = 1; i <= n; i++){
int x; cin>>x; s.insert(x);
}
for(int i = 1; i <= m; i++){
int x; cin>>x;
if(s.count(x))cout<<"YES\n";
else cout<<"NO\n";
}
return 0;
}
  1. ​互斥的数​
/*
贪心
1.找出不互质的数的集合,就是把互斥的数删去.
2.那么当有两个互斥的数时,如果删掉前面(小)的,这个数后面的与它互斥的数也会入选,所以删掉后面的更优。
3.因为每个数都是不同的。
*/
#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
const int maxn = 1e5+10;
int n, p, a[maxn], ans;
map<int,int>ma;
int main(){
cin>>n>>p;
for(int i = 1; i <= n; i++)cin>>a[i];
sort(a+1,a+n+1);
//枚举每个数,如果当前数没有被删,那么集合元素+1,然后把与他互斥的数删了。
for(int i = 1; i <= n; i++)
if(!ma[a[i]]){ ma[a[i]*p]=1; ans++; }
cout<<ans<<"\n";
return 0;
}
  1. ​砝码称重 2​
//Meet in the Middle
#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
int n, mass, ans(666), f[233];
map<int, int>ma; //能称出的质量->需要的砝码
//k:当前用的砝码个数,cur:从哪个砝码开始选,sum:当前称出的质量
void dfs1(int k, int cur, int sum){
if(sum>mass || cur>n/2)return ;
ma[sum] = k;
dfs1(k+1,cur+1,sum+f[cur]);//选当前砝码
dfs1(k,cur+1,sum);//不选当前砝码
}
void dfs2(int k, int cur, int sum){
if(sum>mass || cur>n)return ;
if(ma.find(mass-sum) != ma.end()){//如果能跟前半段的结果组成目标质量
ans = min(ans,k+ma[mass-sum]);//更新答案
return;
}
dfs2(k+1,cur+1,sum+f[cur]);
dfs2(k,cur+1,sum);
}
int main(){
cin>>n>>mass;
for(int i = 0; i < n; i++)
cin>>f[i];
dfs1(0,0,0);//先搜前半段
dfs2(0,n/2,0);//再搜后半段
cout<<ans<<"\n";
return 0;
}

0x08树型动态规划

  1. ​访问艺术馆​
/*
1.将博物馆的结构抽象成一棵二叉树,每条边都有对应的权值(走过这条边花费的时间)
2.只在叶子节点有藏画,要求你在有限的时间内偷到尽可能多的藏画。
3.点的信息按照深度优先顺序给出(前序遍历),建立一颗二叉树;
4.然后从根节点开始深搜,每走过一条走廊到达下一个点,
5.剩余的时间remain要减去2倍这条走廊的花费,相当于一去一回;
*/
//f[i,j]:来到第i个走廊(还未走过这条走廊)还剩下j时间,能拿到最大的画的数量。
//f[i,j]=max{f[i,j],f[lch,k]+f[rch,j-2*t[i]-k]| 0<=k<=j-2*t[i]};
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1010;
//堆式建树
int tree[maxn<<1][2], f[maxn][maxn];
void init(int root){
//tree[i][0]:走过第i条走廊的时间,tree[i][1]:第i条走廊某端的藏画
cin>>tree[root][0]>>tree[root][1];
tree[root][0] *= 2;
if(!tree[root][1]){
init(root<<1);
init(root<<1|1);
}
}
int dp(int i, int j){
if(f[i][j] || j==0)return f[i][j];//搜过了或者没有时间了就返回
if(tree[i][1])return f[i][j]=min(tree[i][1],(j-tree[i][0])/5);//有藏画的叶子节点
for(int k = 0; k <= j-tree[i][0]; k++)
f[i][j]=max(f[i][j],dp(i<<1,k)+dp(i<<1|1,j-tree[i][0]-k));
return f[i][j];
}
int main(){
int tot;
cin>>tot;
init(1);
cout<<dp(1,tot)<<"\n";
return 0;
}
  1. ​没有上司的舞会​
//用f[x][0],f[x][1] 分别表示x没去和去了的最大价值。
//f[x][0] = sigmar:max(f[y][0],f[y][1]);
//f[x][1] = sigmar:f[y][0];
#include<iostream>
#include<algorithm>
#include<vector>
const int maxn = 6000<<1;
using namespace std;
int n, r[maxn], f[maxn][2], in[maxn];
vector<int>G[maxn];
int dp(int x, int q){
if(f[x][q])return f[x][q];
if(q)f[x][q] = r[x];
for(int i = 0; i < G[x].size(); i++){
int y = G[x][i];
if(q)f[x][q] += dp(y,0);
else f[x][q] += max(dp(y,0),dp(y,1));
}
return f[x][q];
}
int main(){
cin>>n;
for(int i = 1; i <= n; i++)cin>>r[i];
for(int i = 1; i <= n; i++){
int a, b; cin>>a>>b;
G[b].push_back(a);
in[a]++;
}
int head = 0; //找树根,即入度为0的结点
for(int i = 1; i <= n; i++)
if(in[i]==0){ head = i; break; }
cout<<max(dp(head,1),dp(head,0))<<"\n";
return 0;
}

0x09最小生成树

  1. ​最小生成树​
//MST-Prim-贪心
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn = 110;
//Graph
int e[maxn][maxn];
//Prim
int dis[maxn], book[maxn];
//main
int main(){
ios::sync_with_stdio(false);
int n; cin>>n;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
cin>>e[i][j];
//将1号顶点加入生成树
book[1] = 1;
for(int i = 1; i <= n; i++)dis[i]=e[1][i];
//将剩余的n-1个点加入生成树
for(int i = 2; i <= n; i++){
//找到所有点里面到生成树距离最短的
int v, w=0xffffff;
for(int j = 1; j <= n; j++)
if(!book[j] && dis[j]<w)
w = dis[v=j];
//将该点加入生成树
book[v] = 1;
//用该点的出边松弛其他非生成树点到生成树的距离
for(int j = 1; j <= n; j++)
if(!book[j] && dis[j]>e[v][j])
dis[j] = e[v][j];
}
LL ans = 0;
for(int i = 1; i <= n; i++)ans += dis[i];
cout<<ans<<"\n";
return 0;
}
//MST-Prim-贪心-堆优化
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = 110;
//Graph
int e[maxn][maxn],ans;
//Prim
struct node{
int v, w;
node(int v=0, int w=0):v(v),w(w){}
bool operator < (node b)const{return w>b.w;}
};
priority_queue<node>q;//保存所有可以抵达生成树的边
int book[maxn];
//main
int main(){
ios::sync_with_stdio(false);
int n; cin>>n;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
cin>>e[i][j];
//将1号顶点加入生成树
book[1] = 1;
for(int i = 1; i <= n; i++)
if(e[1][i])q.push(node(i,e[1][i]));
//将剩余的n-1个点加入生成树
for(int i = 2; i <= n; i++){
//找到所有(与生成树相连的)点里面到生成树距离最短的
node t = q.top(); q.pop();
while(book[t.v]){//只有不在生成树里的点才可以加到生成树里面,这里避免重复。
t = q.top(); q.pop();
}
//将该点加入生成树
book[t.v] = 1; ans += t.w;
//用该点的出边松弛其他非生成树点到生成树的距离
for(int j = 1; j <= n; j++)
if(!book[j] && e[t.v][j])//当前加入生成树的点可以扩充出的边指向的节点
q.push(node(j,e[t.v][j]));
}
cout<<ans<<"\n";
return 0;
}
  1. ​最优布线问题​
//MST-Kruskal-排序贪心+并查集
//题中N=M,(M小于N^2的)稀疏图。
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn = 100010;
//Graph
struct Edge{ int u, v, w; }e[maxn];
bool cmp(Edge a, Edge b){return a.w<b.w;}
//UnionFindSet
int fa[maxn];
void init(int n){for(int i=1;i<=n;i++)fa[i]=i;}
int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
void merge(int x,int y){x=find(x);y=find(y);if(x!=y)fa[x]=y;}
//main
int main(){
int n, m;
cin>>n>>m;
for(int i = 1; i <= m; i++)
cin>>e[i].u>>e[i].v>>e[i].w;
sort(e+1,e+m+1,cmp);
LL ans = 0;
init(n);
for(int i = 1; i <= m; i++){
int u = e[i].u, v = e[i].v;
if(find(u) != find(v)){
merge(u,v);
ans += e[i].w;
}
}
cout<<ans<<"\n";
return 0;
}


标签:Diamond,return,int,题解,cin,++,maxn,include,CodeVs
From: https://blog.51cto.com/gwj1314/6056165

相关文章

  • CodeVs天梯白银Silver题解
    title:CodeVs天梯之Silverdate:2017-12-28tags:天梯CodesVscategories:OICodeVs天梯之Silver2017.12.18Bygwj11391774100x01排序​​明明的随机数​​#include<iost......
  • CodeVs天梯青铜Bronze题解
    CodeVs天梯之Bronze2017.12.18Bygwj11391774100x01整数处理​​最小数和最大数​​#include<iostream>#include<algorithm>usingnamespacestd;intmain(){intn;c......
  • CF446C DZY Loves Fibonacci Numbers 题解和加强
    简要题意https://www.luogu.com.cn/problem/CF446C给定一个长度为\(n\)的序列\(A\),要求支持两种操作:1给定区间\((l,r)\)对这个区间内的每个数,依次加斐波那契数列......
  • str 学数学 题解
    Example1(str学数学)str同学因为名字里含有一个str,所以觉得字符串对于他来说太简单了,于是他开始了他的数学之旅。在旅途中str遇到了刚抽到胡桃的lyl,而lyl同学正......
  • clion 2022 win10上编译的程序不可运行---问题解决
    会报错,0xc000007b网上说,可能是dll库丢失等问题,我试了无效我的修复过程如下编译的时候,默认是使用ninja,将buildtool改成make即可 ......
  • CF1567E Non-Decreasing Dilemma 题解 线段树
    题目链接:http://codeforces.com/problemset/problem/1567/E题目大意:有一个长度为\(n\)的数列\(a\),你需要对其进行\(q\)次操作,操作有两种类型,按如下格式给出:1xy:......
  • Ubuntu cmake 安装以及问题解决(muduo库编译)
    1、安装cmakesudoapt-getinstallcmake 2、安装之后查看是否安装成功:cmake--version3、出现 NoCMAKE_C_COMPILERcouldbefound.如何解决使用cmake命令时发......
  • [ABC289D] Step Up Robot 题解
    Problem有一机器人初始在\(0\)级阶梯,对于每一级阶梯,机器人可以从\(1\simN\)种任选一个\(i\)走\(A_i\)步,同时有\(M\)个障碍在\(B_i\)级阶梯,若走到障碍则将无......
  • P2430 严酷的训练 题解
    题目背景Lj的朋友WKY是一名神奇的少年,在同龄人之中有着极高的地位。。。题目描述他的老师老王对他的程序水平赞叹不已,于是下决心培养这名小子。老王的训练方式很奇怪,他......
  • 前端导出pdf字体表格被截断问题解决
    最近有个导出pdf的需求,写好之后分页出现字体,表格被截断的问题,影响美观,需要解决。  经过多方查找,发现一个比较好的思路,设置背景色为白色,然后转成图片后,获取截断处图片......