import os
import tqdm
import torch
import random
import shutil
import numpy as np
1. Base Config
1.1 Check version of pytorch
print("torch version ",torch.__version__) # PyTorch version
print("cuda version ", torch.version.cuda) # Corresponding CUDA version
print("cuDNN version ", torch.backends.cudnn.version()) # Corresponding cuDNN version
print("gpu type ", torch.cuda.get_device_name(0)) # GPU type
torch version 1.12.0+cu116
cuda version 11.6
cuDNN version 8302
gpu type NVIDIA GeForce GTX 1660 Ti
1.2 Update pytroch
pip install --update torch
1.3 Set random number
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
1.4 Run a tensor in Specified GPU
a = torch.rand(2,2)
a = a.to("cuda:0")
print(a)
tensor([[0.3074, 0.6341],
[0.4901, 0.8964]], device='cuda:0')
1.5 CUDA support ?
print("cuda ok? ", torch.cuda.is_available())
cuda ok? True
1.6 Set mode with cuDNN benchmark
Benchmark will accelarate up train speed, but each there exists random situlation in each train step.
torch.backends.cudnn.benchmark = True
To avoid this situlaiton, you should run the code
torch.backends.cudnn.deterministic = True
1.7 Clear cache of GPU
torch.cuda.empty_cache()
OR
find the progress and kill it
ps aux | grep python
kill -9 [pid]
OR
use nvidia cmd
nvidia-smi --gpu-reset -i [gpu_id]
标签:01,torch,cuDNN,Pytorch,version,使用手册,cuda,print,import From: https://www.cnblogs.com/Kalafinaian/p/17117843.html