首页 > 其他分享 >15-批次之间具有堆叠的LSTM

15-批次之间具有堆叠的LSTM

时间:2023-02-09 00:25:12浏览次数:45  
标签:back 15 look batch dataset 堆叠 LSTM model size

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
from keras.models import Sequential
from keras.layers import Dense, LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error

"""
堆叠LSTM时,需要将上层的输入形状向下继续传递,设置return_sequences=True参数
差异:
model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True))
model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))
"""
# 将数据截取成3个一组的监督学习格式
def create_dataset(dataset, look_back=1):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i:(i+look_back), 0]
        dataX.append(a)
        dataY.append(dataset[i+look_back, 0])
    return np.array(dataX), np.array(dataY)

# 定义随机种子,以便重现结果
np.random.seed(42)

# 加载数据
df = pd.read_csv('../LSTM_Fly/airline-passengers.csv', usecols=[1], engine='python')
dataset = df.values
dataset = dataset.astype(np.float32)

# 缩放数据
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)

# 分割1/3的数据作为测试
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[:train_size, :], dataset[train_size:, :]

# 预测数据步长为3, 三个预测1个
look_back = 3
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)

# 重构输入数据格式[samples, timesteps, features]
trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))

# 构建LSTM网络
batch_size = 1
model = Sequential()
# 堆叠两层网络,参数return_sequence=True表示将上层的输入形状向下继续传递
model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True))
model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
print(model.summary())

# 网络训练一个周期,循环训练100次
for i in range(100):
    model.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)
    # 每次训练完都重置网络状态
    model.reset_states()
    
# 对训练数据的Y进行预测
trainPredict = model.predict(trainX, batch_size=batch_size)

# 重置网络状态
model.reset_states()

# 对测试数的Y进行预测
testPredict = model.predict(testX, batch_size=batch_size)

# 对数据进行逆缩放
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])

# 计算RMSE误差
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:, 0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:, 0]))
print('Test Score: %.2f RMSE' % (testScore))

# 构造一个和dataset格式相同的数组,供145行,dataset为总数据集,把预测的93行训练数据存进去
trainPredictPlot = np.empty_like(dataset)

# 用nan填充数据组
trainPredictPlot[:, :] = np.nan

# 将训练集预测的Y添加进数组,从第3位到93+3位,共93行
trainPredictPlot[look_back: len(trainPredict)+look_back, :] = trainPredict

# 构造一个和dataset格式相同的数组,共145行,把预测的后44行测试数据放进去
testPredictPlot = np.empty_like(dataset)
testPredictPlot[:, :] = np.nan

# 将测试集预测的Y添加进数组,从第94+4位到最后,共44行
testPredictPlot[len(trainPredict)+(look_back*2)+1: len(dataset)-1, :] = testPredict

# 画图
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

标签:back,15,look,batch,dataset,堆叠,LSTM,model,size
From: https://www.cnblogs.com/lotuslaw/p/17103811.html

相关文章

  • 7-更健壮的LSTM案例
    importpandasaspdimportdatetimefromsklearn.metricsimportmean_squared_errorfromsklearn.preprocessingimportMinMaxScalerfromkeras.modelsimportSequ......
  • 8-LSTM多变量-预处理
    importpandasaspdimportdatetimedefparser(x):returndatetime.datetime.strptime(x,'%Y%m%d%H')dataset=pd.read_csv('../LSTM系列/LSTM多变量1/dat......
  • 9-LSTM多变量-数据输出
    importpandasaspdimportmatplotlib.pyplotaspltdataset=pd.read_csv('../LSTM系列/LSTM多变量1/data_set/air_pollution_new.csv',header=0,index_col=0)val......
  • 10-LSTM多变量-LSTM数据预处理
    importpandasaspdfromsklearn.preprocessingimportMinMaxScaler,LabelEncoderimportnumpyasnp#转换成有监督数据defseries_to_supervised(data,n_in=1,......
  • 11-LSTM多变量-LSTM数据预处理_tmp
    importpandasaspdimportdatetime#加载数据defparser(x):returndatetime.datetime.strptime(x,'%Y%m%d%H')dataset=pd.read_csv('../LSTM系列/LSTM......
  • 12-LSTM多变量-定义&训练模型
    importmathimportnumpyasnpimportmatplotlib.pyplotaspltimportpandasaspdfromsklearn.preprocessingimportMinMaxScaler,LabelEncoderfromsklearn.me......
  • 13-LSTM多步预测-静态模型预测
    importpandasaspdfromsklearn.metricsimportmean_squared_errorimportmathimportmatplotlib.pyplotaspltimportdatetimedefparser(x):returndatet......
  • 5-LSTM模型开发
    """长短期记忆网络(LSTM)是一种循环神经网络(RNN)。这种类型的网络的一个好处是它可以学习和记住长序列,并且不依赖于预先指定的窗口滞后观察作为输入。在Keras中,这被称为......
  • 6-完整的LSTM案例
    importpandasaspdimportdatetimefromsklearn.metricsimportmean_squared_errorfromsklearn.preprocessingimportMinMaxScalerfromkeras.modelsimportSequ......
  • 算法15:冷门面试题_队列实现栈,栈实现队列
     经常有些面试官很变态,一般都是老阴逼级别的,喜欢问一些变态的问题。但是,反过来思考一下,这些题目也确实具备一些动手的能力,变相能够考查面试者的coding能力。面试一:怎么......