首页 > 其他分享 >7-更健壮的LSTM案例

7-更健壮的LSTM案例

时间:2023-02-09 00:14:37浏览次数:49  
标签:健壮 yhat batch scaled 案例 train values LSTM model

import pandas as pd
import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM
import math
import matplotlib.pyplot as plt
import numpy as np

# 读取时间数据的格式化
def parser(x):
    return datetime.datetime.strptime(x, '%Y/%m/%d')

# 转换成有监督数据
def timeseries_to_supervised(data, lag=1):
    df = pd.DataFrame(data)
    tmp = [df.shift(i) for i in range(1, lag+1)]
    tmp.append(df)
    df = pd.concat(tmp, axis=1)
    df.fillna(0, inplace=True)
    return df

# 转换成差分数据
def difference(dataset, interval=1):
    diff = []
    for i in range(interval, len(dataset)):
        value = dataset[i] - dataset[i - interval]
        diff.append(value)
    return pd.Series(diff)

# 逆差分
def inverse_difference(history, yhat, interval=1):
    return yhat + history[-interval]

# 缩放
def scale(train, test):
    # 根据训练数据建立缩放器
    scaler = MinMaxScaler(feature_range=(-1, 1))
    scaler.fit(train)
    train_scaled = scaler.transform(train)
    test_scaled = scaler.transform(test)
    return scaler, train_scaled, test_scaled

# 逆缩放
def invert_scale(scaler, X, value):
    new_row = [x for x in X] + [value]
    array = np.array(new_row).reshape(1, len(new_row))
    inverted = scaler.inverse_transform(array)
    return inverted[0, -1]

# fit LSTM来训练数据
def fit_lstm(train, batch_size, nb_epoch, neurons):
    X, y = train[:, 0:-1], train[:, -1]
    X = X.reshape(X.shape[0], 1, X.shape[1])
    model = Sequential()
    model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
    model.add(Dense(1))
    print(model.summary())
    model.compile(loss='mean_squared_error', optimizer='adam')
    for i in range(nb_epoch):
        # 按照batch_size,一次读取batch_size个数据
        model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
        model.reset_states()
        print("当前计算次数:", i+1)
    return model

# 1步长预测
def forecast_lstm(model, batch_size, X):
    X = X.reshape(1, 1, len(X))
    yhat = model.predict(X, batch_size=batch_size)
    return yhat[0, 0]

# 加载数据
def parser(x):
    return datetime.datetime.strptime(x, '%Y/%m/%d')

ser = pd.read_csv('../LSTM系列/LSTM单变量1/data_set/shampoo-sales.csv', 
                header=0, parse_dates=[0], index_col=0, date_parser=parser).squeeze('columns')

# 稳定
raw_values = ser.values
diff_values = difference(raw_values, 1)

# 有监督
supervised = timeseries_to_supervised(diff_values, 1)
supervised_values = supervised.values

# 拆分训练集、测试集合
train, test = supervised_values[:-12], supervised_values[-12:]

# 缩放
scaler, train_scaled, test_scaled = scale(train, test)

# fit模型
# 重复实验
repeats = 30
error_scores = []
for r in range(repeats):
    lstm_model = fit_lstm(train_scaled, 1, 100, 4)
    # 预测
    train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1)  # 训练数据转换为可输入的矩阵
    lstm_model.predict(train_reshaped, batch_size=1)
    predictions = []
    for i in range(len(test_scaled)):
        # 1步长预测
        X, y = test_scaled[i, 0:-1], test_scaled[i, -1]
        yhat = forecast_lstm(lstm_model, 1, X)
        yhat = invert_scale(scaler, X, yhat)
        yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i)
        predictions.append(yhat)
        expected = raw_values[len(train) + i + 1]
        print('Moth=%d, Predicted=%f, Expected=%f' % (i + 1, yhat, expected))
        # 性能报告
    rmse = math.sqrt(mean_squared_error(raw_values[-12:], predictions))
    print('Test RMSE:%.3f' % rmse)
    error_scores.append(rmse)

# 绘图
results = pd.DataFrame()
results['rmse'] = error_scores
print(results.describe())
results.boxplot()
plt.show()

标签:健壮,yhat,batch,scaled,案例,train,values,LSTM,model
From: https://www.cnblogs.com/lotuslaw/p/17103787.html

相关文章

  • 8-LSTM多变量-预处理
    importpandasaspdimportdatetimedefparser(x):returndatetime.datetime.strptime(x,'%Y%m%d%H')dataset=pd.read_csv('../LSTM系列/LSTM多变量1/dat......
  • 9-LSTM多变量-数据输出
    importpandasaspdimportmatplotlib.pyplotaspltdataset=pd.read_csv('../LSTM系列/LSTM多变量1/data_set/air_pollution_new.csv',header=0,index_col=0)val......
  • 10-LSTM多变量-LSTM数据预处理
    importpandasaspdfromsklearn.preprocessingimportMinMaxScaler,LabelEncoderimportnumpyasnp#转换成有监督数据defseries_to_supervised(data,n_in=1,......
  • 11-LSTM多变量-LSTM数据预处理_tmp
    importpandasaspdimportdatetime#加载数据defparser(x):returndatetime.datetime.strptime(x,'%Y%m%d%H')dataset=pd.read_csv('../LSTM系列/LSTM......
  • 12-LSTM多变量-定义&训练模型
    importmathimportnumpyasnpimportmatplotlib.pyplotaspltimportpandasaspdfromsklearn.preprocessingimportMinMaxScaler,LabelEncoderfromsklearn.me......
  • 13-LSTM多步预测-静态模型预测
    importpandasaspdfromsklearn.metricsimportmean_squared_errorimportmathimportmatplotlib.pyplotaspltimportdatetimedefparser(x):returndatet......
  • 5-LSTM模型开发
    """长短期记忆网络(LSTM)是一种循环神经网络(RNN)。这种类型的网络的一个好处是它可以学习和记住长序列,并且不依赖于预先指定的窗口滞后观察作为输入。在Keras中,这被称为......
  • 6-完整的LSTM案例
    importpandasaspdimportdatetimefromsklearn.metricsimportmean_squared_errorfromsklearn.preprocessingimportMinMaxScalerfromkeras.modelsimportSequ......
  • 【Spring】Spring框架入门案例
    1.下载Spring5(1)Spring官网https://spring.io/(2)下载地址https://repo.spring.io/ui/native/release/org/springframework/spring/下载解压,文件夹说明2.创建普通Java......
  • Cookie案例 分析 实现
    案例:记住上一次访问时间1需求 访问一个Servlet 如果是第一次访问 则提示 您好欢迎您首次访问2如果不是第一次访问 则提示 欢迎回来 您上次访问时间为 显示时间字......