利用numpy可以很方便的计算两个二维数组之间的距离。二维数组之间的距离定义为:X的维度为(m, c),Y的维度为(m,c),Z为X到Y的距离数组,维度为(m,n)。且Z[0,0]是X[0]到Y[0]的距离。Z(a,b)为X[a]到Y[b]的距离。
例如: 计算 m*2 的矩阵 与 n * 2 的矩阵中,m*2 的每一行到 n*2 的两两之间欧氏距离。
''' L2 = sqrt((x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2) ''' import numpy as np # ============= 方法一:不用循环 ==================== def L2_dist_1(cloud1, cloud2): m, n = len(cloud1), len(cloud2) cloud1 = np.repeat(cloud1, n, axis=0) cloud1 = np.reshape(cloud1, (m, n, -1)) dist = np.sqrt(np.sum((cloud1 - cloud2)**2, axis=2)) return dist # ============= 方法二:用一重循环 ================== def L2_dist_2(cloud1, cloud2): m, n = len(cloud1), len(cloud2) dist = np.zeros((m, n), dtype=np.float) for i in range(m): dist[i, :] = np.sqrt(np.sum((cloud1[i, :] - cloud2)**2, axis=1)) return dist # ============= 方法二:用两重循环 ================== def L2_dist_3(cloud1, cloud2): m, n = len(cloud1), len(cloud2) dist = np.zeros((m, n), dtype=np.float) for i in range(m): for j in range(n): dist[i, j] = np.sqrt(np.sum((cloud1[i, :] - cloud2[j, :])**2, axis=0)) return dist if __name__ == '__main__': a = np.array([[ 0, 0, 0], [10,10,10], [20,20,20], [30,30,30]]) b = np.array([[ 0, 0, 0], [10,10,10]]) print('不用循环:\n', L2_dist_1(a, b)) print('用一重循环:\n', L2_dist_2(a, b)) print('用两重循环:\n', L2_dist_3(a, b))
程序运行结果:
标签:10,dist,cloud2,cloud1,矩阵,广播,L2,np,Numpy From: https://www.cnblogs.com/picassooo/p/16655346.html