首页 > 其他分享 >OpenMMLab AI实战营 第三课笔记

OpenMMLab AI实战营 第三课笔记

时间:2023-02-04 23:55:06浏览次数:71  
标签:flower mobilenet mmcls AI v2 dict OpenMMLab 第三课 type

OpenMMLab AI实战营 第三课笔记


目录

花朵五分类数据集:https://www.kaggle.com/datasets/alxmamaev/flowers-recognition

进入 mmclassification 目录

In [1]:

import os
os.chdir('mmclassification')

导入工具包

In [2]:

import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('device', device)
device cuda:0

下载数据集

In [3]:

!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/flower.zip -O data/flower.zip
--2022-07-16 22:34:18--  https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/flower.zip
Connecting to 172.16.0.13:5848... connected.
Proxy request sent, awaiting response... 200 OK
Length: 230662310 (220M) [application/zip]
Saving to: ‘data/flower.zip’

data/flower.zip     100%[===================>] 219.98M  27.9MB/s    in 7.8s    

2022-07-16 22:34:28 (28.3 MB/s) - ‘data/flower.zip’ saved [230662310/230662310]

In [4]:

# 解压
!unzip data/flower.zip -d data >> /dev/null

In [13]:

from PIL import Image
Image.open('data/flower/test/daisy/11023214096_b5b39fab08.jpg')

数据集目录结构

In [21]:

'''
flower
    ├── classes.txt
    ├── train.txt
    ├── val.txt
    ├── test.txt
    ├── train
    │   ├── daisy
    │   ├── dandelion
    │   ├── rose
    │   ├── sunflower
    │   └── tulip
    ├── test
    │   ├── daisy
    │   ├── dandelion
    │   ├── rose
    │   ├── sunflower
    │   └── tulip
    └── val
        ├── daisy
        ├── dandelion
        ├── rose
        ├── sunflower
        └── tulip

'''

下载 config 配置文件

In [30]:

'''
Model config, which specify the basic structure of the model, e.g. number of the input channels.
Dataset config, which contains details about the dataset, e.g. type of the dataset.
Schedule config, which specify the training schedules, e.g. learning rate.
Runtime config, which contains the rest of details, e.g. log config.
'''

In [11]:

!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/configs/mobilenet_v2_1x_flower.py -O configs/mobilenet_v2/mobilenet_v2_1x_flower.py
--2022-07-16 22:51:45--  https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/configs/mobilenet_v2_1x_flower.py
Connecting to 172.16.0.13:5848... connected.
Proxy request sent, awaiting response... 200 OK
Length: 1975 (1.9K) [binary/octet-stream]
Saving to: ‘configs/mobilenet_v2/mobilenet_v2_1x_flower.py’

configs/mobilenet_v 100%[===================>]   1.93K  --.-KB/s    in 0s      

2022-07-16 22:51:45 (8.72 MB/s) - ‘configs/mobilenet_v2/mobilenet_v2_1x_flower.py’ saved [1975/1975]

命令行-训练

In [12]:

!python tools/train.py \
        configs/mobilenet_v2/mobilenet_v2_1x_flower.py \
        --work-dir work_dirs/mobilenet_v2_1x_flower
/home/featurize/work/MMClassification教程/mmclassification/mmcls/utils/setup_env.py:33: UserWarning: Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  f'Setting OMP_NUM_THREADS environment variable for each process '
/home/featurize/work/MMClassification教程/mmclassification/mmcls/utils/setup_env.py:43: UserWarning: Setting MKL_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  f'Setting MKL_NUM_THREADS environment variable for each process '
2022-07-16 22:51:55,465 - mmcls - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.7.10 (default, Jun  4 2021, 14:48:32) [GCC 7.5.0]
CUDA available: True
GPU 0: NVIDIA RTX A4000
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.2, V11.2.152
GCC: gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
PyTorch: 1.10.0+cu113
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX512
  - CUDA Runtime 11.3
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  - CuDNN 8.2
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, 

TorchVision: 0.11.1+cu113
OpenCV: 4.5.4
MMCV: 1.6.0
MMCV Compiler: GCC 9.3
MMCV CUDA Compiler: 11.3
MMClassification: 0.23.1+d2e5054
------------------------------------------------------------

2022-07-16 22:51:55,465 - mmcls - INFO - Distributed training: False
2022-07-16 22:51:55,601 - mmcls - INFO - Config:
model = dict(
    type='ImageClassifier',
    backbone=dict(type='MobileNetV2', widen_factor=1.0),
    neck=dict(type='GlobalAveragePooling'),
    head=dict(
        type='LinearClsHead',
        num_classes=5,
        in_channels=1280,
        loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
        topk=(1, 3)))
dataset_type = 'ImageNet'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='RandomResizedCrop', size=224, backend='pillow'),
    dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='ToTensor', keys=['gt_label']),
    dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', size=(256, -1), backend='pillow'),
    dict(type='CenterCrop', crop_size=224),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='ImageToTensor', keys=['img']),
    dict(type='Collect', keys=['img'])
]
data = dict(
    samples_per_gpu=32,
    workers_per_gpu=2,
    train=dict(
        type='ImageNet',
        data_prefix='data/flower/train',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='RandomResizedCrop', size=224, backend='pillow'),
            dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='ToTensor', keys=['gt_label']),
            dict(type='Collect', keys=['img', 'gt_label'])
        ],
        classes='data/flower/classes.txt'),
    val=dict(
        type='ImageNet',
        data_prefix='data/flower/val',
        ann_file='data/flower/val.txt',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='Resize', size=(256, -1), backend='pillow'),
            dict(type='CenterCrop', crop_size=224),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ],
        classes='data/flower/classes.txt'),
    test=dict(
        type='ImageNet',
        data_prefix='data/flower/test',
        ann_file='data/flower/test.txt',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='Resize', size=(256, -1), backend='pillow'),
            dict(type='CenterCrop', crop_size=224),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ],
        classes='data/flower/classes.txt'))
evaluation = dict(
    interval=1,
    metric=['accuracy', 'precision', 'f1_score'],
    metric_options=dict(topk=(1, )))
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(policy='step', gamma=0.98, step=[1])
runner = dict(type='EpochBasedRunner', max_epochs=2)
checkpoint_config = dict(interval=1)
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth'
resume_from = None
workflow = [('train', 1)]
work_dir = 'work_dirs/mobilenet_v2_1x_flower'
gpu_ids = [0]

2022-07-16 22:51:55,601 - mmcls - INFO - Set random seed to 943425345, deterministic: False
2022-07-16 22:51:55,802 - mmcls - INFO - initialize MobileNetV2 with init_cfg [{'type': 'Kaiming', 'layer': ['Conv2d']}, {'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm', 'GroupNorm']}]
2022-07-16 22:51:55,832 - mmcls - INFO - initialize LinearClsHead with init_cfg {'type': 'Normal', 'layer': 'Linear', 'std': 0.01}
2022-07-16 22:52:02,074 - mmcls - INFO - load checkpoint from http path: https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
2022-07-16 22:52:02,104 - mmcls - WARNING - The model and loaded state dict do not match exactly

size mismatch for head.fc.weight: copying a param with shape torch.Size([1000, 1280]) from checkpoint, the shape in current model is torch.Size([5, 1280]).
size mismatch for head.fc.bias: copying a param with shape torch.Size([1000]) from checkpoint, the shape in current model is torch.Size([5]).
2022-07-16 22:52:02,105 - mmcls - INFO - Start running, host: featurize@featurize, work_dir: /home/featurize/work/MMClassification教程/mmclassification/work_dirs/mobilenet_v2_1x_flower
2022-07-16 22:52:02,105 - mmcls - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) StepLrUpdaterHook                  
(NORMAL      ) CheckpointHook                     
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_train_epoch:
(VERY_HIGH   ) StepLrUpdaterHook                  
(LOW         ) IterTimerHook                      
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_train_iter:
(VERY_HIGH   ) StepLrUpdaterHook                  
(LOW         ) IterTimerHook                      
(LOW         ) EvalHook                           
 -------------------- 
after_train_iter:
(ABOVE_NORMAL) OptimizerHook                      
(NORMAL      ) CheckpointHook                     
(LOW         ) IterTimerHook                      
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
after_train_epoch:
(NORMAL      ) CheckpointHook                     
(LOW         ) EvalHook                           
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_val_epoch:
(LOW         ) IterTimerHook                      
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_val_iter:
(LOW         ) IterTimerHook                      
 -------------------- 
after_val_iter:
(LOW         ) IterTimerHook                      
 -------------------- 
after_val_epoch:
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
after_run:
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
2022-07-16 22:52:02,105 - mmcls - INFO - workflow: [('train', 1)], max: 2 epochs
2022-07-16 22:52:02,105 - mmcls - INFO - Checkpoints will be saved to /home/featurize/work/MMClassification教程/mmclassification/work_dirs/mobilenet_v2_1x_flower by HardDiskBackend.
2022-07-16 22:52:11,810 - mmcls - INFO - Saving checkpoint at 1 epochs
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 715/715, 354.3 task/s, elapsed: 2s, ETA:     0s2022-07-16 22:52:13,944 - mmcls - INFO - Epoch(val) [1][23]	accuracy_top-1: 66.1538, precision: 73.5692, f1_score: 65.5141
2022-07-16 22:52:23,245 - mmcls - INFO - Saving checkpoint at 2 epochs
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 715/715, 360.9 task/s, elapsed: 2s, ETA:     0s2022-07-16 22:52:25,354 - mmcls - INFO - Epoch(val) [2][23]	accuracy_top-1: 88.6713, precision: 89.7683, f1_score: 88.7995

用训练得到的图像分类模型,对新图像预测

In [16]:

import matplotlib.pyplot as plt
import mmcv
from mmcls.apis import inference_model, init_model, show_result_pyplot

img = mmcv.imread('data/flower/test/daisy/11023214096_b5b39fab08.jpg')
# img = mmcv.imread('data/cat2.jpg')


# 图像分类模型 config 配置文件
config_file = 'configs/mobilenet_v2/mobilenet_v2_1x_flower.py'
# 图像分类模型 checkpoint 权重文件
checkpoint_file = 'work_dirs/mobilenet_v2_1x_flower/latest.pth'
# 通过 config 配置文件 和 checkpoint 权重文件 构建模型
model = init_model(config_file, checkpoint_file, device=device)

result = inference_model(model, img)
print('类别', result['pred_class'], '置信度', result['pred_score'])

show_result_pyplot(model, img, result)
load checkpoint from local path: work_dirs/mobilenet_v2_1x_flower/latest.pth
类别 daisy 置信度 0.9996930360794067

将训练得到的模型在测试集上预测,获得所有测试集数据的预测结果

In [17]:

!python tools/test.py \
        configs/mobilenet_v2/mobilenet_v2_1x_flower.py \
        work_dirs/mobilenet_v2_1x_flower/latest.pth \
        --out testset_result.json
/home/featurize/work/MMClassification教程/mmclassification/mmcls/utils/setup_env.py:33: UserWarning: Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  f'Setting OMP_NUM_THREADS environment variable for each process '
/home/featurize/work/MMClassification教程/mmclassification/mmcls/utils/setup_env.py:43: UserWarning: Setting MKL_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  f'Setting MKL_NUM_THREADS environment variable for each process '
load checkpoint from local path: work_dirs/mobilenet_v2_1x_flower/latest.pth
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 715/715, 358.6 task/s, elapsed: 2s, ETA:     0s
dumping results to results_flower.json

将训练得到的模型在测试集上预测,获得图像分类评估结果

In [18]:

!python tools/test.py \
        configs/mobilenet_v2/mobilenet_v2_1x_flower.py \
        work_dirs/mobilenet_v2_1x_flower/latest.pth \
        --metrics accuracy precision recall f1_score support \
        --metric-options topk=1
/home/featurize/work/MMClassification教程/mmclassification/mmcls/utils/setup_env.py:33: UserWarning: Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  f'Setting OMP_NUM_THREADS environment variable for each process '
/home/featurize/work/MMClassification教程/mmclassification/mmcls/utils/setup_env.py:43: UserWarning: Setting MKL_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  f'Setting MKL_NUM_THREADS environment variable for each process '
load checkpoint from local path: work_dirs/mobilenet_v2_1x_flower/latest.pth
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 715/715, 352.3 task/s, elapsed: 2s, ETA:     0s
accuracy : 88.67

support : 715.0

precision : 89.77

recall : 88.83

f1_score : 88.8

标签:flower,mobilenet,mmcls,AI,v2,dict,OpenMMLab,第三课,type
From: https://www.cnblogs.com/isLinXu/p/17092668.html

相关文章

  • [Docker] Remove all containers and images
    TocleanupDockerimagesandcontainers,youcanusethefollowingcommandsintheterminal:Removeallcontainers:dockerrm$(dockerps-a-q)Removeall......
  • [rk3568][buildroot] 移除RK3568 iodomain check
    1.问题背景RK3568基线代码默认会起一个服务监控RK3568iodomain,该服务间隔性输出log信息;由于该功能非必要,故选择移除该部分逻辑2.解决方案查看源码编译脚本,如下图所......
  • Mybaits
    记录一下在Maven中使用Mybaits单纯的Mybatis,没有整合spring首先在pom中导入依赖点击查看代码<dependencies><!--单元测试--><dependency><g......
  • A卡配置NovelAI详细步骤参考(Ubuntu20.04)
    前些天发现,A卡居然可以通过ROCm跑AI,我们来尝试一下能不能跑前两个月爆火的NovelAI。一、双系统安装 大家看教程一定要先看系统版本!!!不一样的系统版本,使用的整合包可能跑......
  • QMainWindow简介
        QMainWindow是带有菜单栏、工具栏、状态栏的主窗口类,它有自己单独的布局。布局有一个中心区域,通常是标准的Qt部件,也可以是定制部件,且必须有一个中心小部件。set......
  • 刷了一个月AI歌唱的视频 做一个大胆预测
    现在的AI热点转到ChatAI和AI唱歌去了很好理解(现在每天在看Neuro的切片感慨这才是看V的初心可惜Neuro这个形象在创立的时候只是一个ChatAI和游戏用的GameBOT并不是同一......
  • ROCm与torch、tensorflow、fairseq的安装
    环境LINUX_DISTROopenSUSETumbleweedx86_64LINUX_KERNEL6.1.8-1-defaultLAPTOP_INFO82UGLegionR9000XARHA7GPUAMDATIRadeonRX6650XT(RX......
  • async和await-cnblog
    在之前对promise对象的处理使用Promise原型函数then,catch解决回调地狱的问题,但存在冗余代码.then().then().then()asyncawaites8(esma2017)引入awaitPromis......
  • 【Java AWT 图形界面编程】Frame 窗口标题栏大小问题 ( Container 容器的空白边框 Ins
    文章目录​​一、Frame窗口标题栏大小问题​​​​二、Container容器的空白边框Insets​​​​三、获取Frame窗口的标题栏高度代码​​​​四、修改后的代码示例​​......
  • 【错误记录】Java AWT 图形界面编程报错 ( Exception in thread “main“ java.awt.AW
    文章目录​​一、报错信息​​​​二、问题分析​​​​三、解决方案​​一、报错信息尝试使用Panel实现线性布局,为Panel设置BoxLayout布局管理器;执行如下代码......