首页 > 其他分享 >Spark Shuffle解析

Spark Shuffle解析

时间:2023-01-31 21:34:00浏览次数:40  
标签:文件 task Shuffle shuffle Executor 磁盘 Spark 解析 stage

1 Shuffle的核心要点

1.1 ShuffleMapStage与ResultStage

Spark Shuffle解析_数据结构

图ShuffleMapStage与ResultStage

在划分stage时,最后一个stage称为finalStage,它本质上是一个ResultStage对象,前面的所有stage被称为ShuffleMapStage。

ShuffleMapStage的结束伴随着shuffle文件的写磁盘。

ResultStage基本上对应代码中的action算子,即将一个函数应用在RDD的各个partition的数据集上,意味着一个job的运行结束。

1.2 Shuffle中的任务个数

我们知道,Spark Shuffle分为map阶段和reduce阶段,或者称之为ShuffleRead阶段和ShuffleWrite阶段,那么对于一次Shuffle,map过程和reduce过程都会由若干个task来执行,那么map task和reduce task的数量是如何确定的呢?

假设Spark任务从HDFS中读取数据,那么初始RDD分区个数由该文件的split个数决定,也就是一个split对应生成的RDD的一个partition,我们假设初始partition个数为N。

初始RDD经过一系列算子计算后(假设没有执行repartition和coalesce算子进行重分区,则分区个数不变,仍为N,如果经过重分区算子,那么分区个数变为M),我们假设分区个数不变,当执行到Shuffle操作时,map端的task个数和partition个数一致,即map task为N个。

reduce端的stage默认取spark.default.parallelism这个配置项的值作为分区数,如果没有配置,则以map端的最后一个RDD的分区数作为其分区数(也就是N),那么分区数就决定了reduce端的task的个数。

1.3 reduce端数据的读取

根据stage的划分我们知道,map端task和reduce端task不在相同的stage中,map task位于ShuffleMapStage,reduce task位于ResultStage,map task会先执行,那么后执行的reduce task如何知道从哪里去拉取map task落盘后的数据呢?

reduce端的数据拉取过程如下:

1.3.1. map task 执行完毕后会将计算状态以及磁盘小文件位置等信息封装到MapStatus对象中,然后由本进程中的MapOutPutTrackerWorker对象将mapStatus对象发送给Driver进程的MapOutPutTrackerMaster对象;

1.3.2. 在reduce task开始执行之前会先让本进程中的MapOutputTrackerWorker向Driver进程中的MapoutPutTrakcerMaster发动请求,请求磁盘小文件位置信息;

1.3.3. 当所有的Map task执行完毕后,Driver进程中的MapOutPutTrackerMaster就掌握了所有的磁盘小文件的位置信息。此时MapOutPutTrackerMaster会告诉MapOutPutTrackerWorker磁盘小文件的位置信息;

1.3.4. 完成之前的操作之后,由BlockTransforService去Executor0所在的节点拉数据,默认会启动五个子线程。每次拉取的数据量不能超过48M(reduce task每次最多拉取48M数据,将拉来的数据存储到Executor内存的20%内存中)。

2 HashShuffle解析

以下的讨论都假设每个Executor有1个CPU core。

2.1. 未经优化的HashShuffleManager

shuffle write阶段,主要就是在一个stage结束计算之后,为了下一个stage可以执行shuffle类的算子(比如reduceByKey),而将每个task处理的数据按key进行“划分”。所谓“划分”,就是对相同的key执行hash算法,从而将相同key都写入同一个磁盘文件中,而每一个磁盘文件都只属于下游stage的一个task。在将数据写入磁盘之前,会先将数据写入内存缓冲中,当内存缓冲填满之后,才会溢写到磁盘文件中去。

下一个stage的task有多少个,当前stage的每个task就要创建多少份磁盘文件。比如下一个stage总共有100个task,那么当前stage的每个task都要创建100份磁盘文件。如果当前stage有50个task,总共有10个Executor,每个Executor执行5个task,那么每个Executor上总共就要创建500个磁盘文件,所有Executor上会创建5000个磁盘文件。由此可见,未经优化的shuffle write操作所产生的磁盘文件的数量是极其惊人的。

shuffle read阶段,通常就是一个stage刚开始时要做的事情。此时该stage的每一个task就需要将上一个stage的计算结果中的所有相同key,从各个节点上通过网络都拉取到自己所在的节点上,然后进行key的聚合或连接等操作。由于shuffle write的过程中,map task给下游stage的每个reduce task都创建了一个磁盘文件,因此shuffle read的过程中,每个reduce task只要从上游stage的所有map task所在节点上,拉取属于自己的那一个磁盘文件即可。

shuffle read的拉取过程是一边拉取一边进行聚合的。每个shuffle read task都会有一个自己的buffer缓冲,每次都只能拉取与buffer缓冲相同大小的数据,然后通过内存中的一个Map进行聚合等操作。聚合完一批数据后,再拉取下一批数据,并放到buffer缓冲中进行聚合操作。以此类推,直到最后将所有数据到拉取完,并得到最终的结果。

未优化的HashShuffleManager工作原理如图1-7所示:

Spark Shuffle解析_数据结构_02

图未优化的HashShuffleManager工作原理

2.2. 优化后的HashShuffleManager

为了优化HashShuffleManager我们可以设置一个参数,spark.shuffle. consolidateFiles,该参数默认值为false,将其设置为true即可开启优化机制,通常来说,如果我们使用HashShuffleManager,那么都建议开启这个选项。

开启consolidate机制之后,在shuffle write过程中,task就不是为下游stage的每个task创建一个磁盘文件了,此时会出现shuffleFileGroup的概念,每个shuffleFileGroup会对应一批磁盘文件,磁盘文件的数量与下游stage的task数量是相同的。一个Executor上有多少个CPU core,就可以并行执行多少个task。而第一批并行执行的每个task都会创建一个shuffleFileGroup,并将数据写入对应的磁盘文件内。

当Executor的CPU core执行完一批task,接着执行下一批task时,下一批task就会复用之前已有的shuffleFileGroup,包括其中的磁盘文件,也就是说,此时task会将数据写入已有的磁盘文件中,而不会写入新的磁盘文件中。因此,consolidate机制允许不同的task复用同一批磁盘文件,这样就可以有效将多个task的磁盘文件进行一定程度上的合并,从而大幅度减少磁盘文件的数量,进而提升shuffle write的性能。

假设第二个stage有100个task,第一个stage有50个task,总共还是有10个Executor(Executor CPU个数为1),每个Executor执行5个task。那么原本使用未经优化的HashShuffleManager时,每个Executor会产生500个磁盘文件,所有Executor会产生5000个磁盘文件的。但是此时经过优化之后,每个Executor创建的磁盘文件的数量的计算公式为:CPU core的数量 * 下一个stage的task数量,也就是说,每个Executor此时只会创建100个磁盘文件,所有Executor只会创建1000个磁盘文件。

优化后的HashShuffleManager工作原理如图1-8所示:

图 优化后的HashShuffleManager工作原理

3 SortShuffle解析

SortShuffleManager的运行机制主要分成两种,一种是普通运行机制,另一种是bypass运行机制。当shuffle read task的数量小于等于spark.shuffle.sort. bypassMergeThreshold参数的值时(默认为200),就会启用bypass机制。

3.1. 普通运行机制

在该模式下,数据会先写入一个内存数据结构中,此时根据不同的shuffle算子,可能选用不同的数据结构。如果是reduceByKey这种聚合类的shuffle算子,那么会选用Map数据结构,一边通过Map进行聚合,一边写入内存;如果是join这种普通的shuffle算子,那么会选用Array数据结构,直接写入内存。接着,每写一条数据进入内存数据结构之后,就会判断一下,是否达到了某个临界阈值。如果达到临界阈值的话,那么就会尝试将内存数据结构中的数据溢写到磁盘,然后清空内存数据结构。

在溢写到磁盘文件之前,会先根据key对内存数据结构中已有的数据进行排序。排序过后,会分批将数据写入磁盘文件。默认的batch数量是10000条,也就是说,排序好的数据,会以每批1万条数据的形式分批写入磁盘文件。写入磁盘文件是通过Java的BufferedOutputStream实现的。BufferedOutputStream是Java的缓冲输出流,首先会将数据缓冲在内存中,当内存缓冲满溢之后再一次写入磁盘文件中,这样可以减少磁盘IO次数,提升性能。

一个task将所有数据写入内存数据结构的过程中,会发生多次磁盘溢写操作,也就会产生多个临时文件。最后会将之前所有的临时磁盘文件都进行合并,这就是merge过程,此时会将之前所有临时磁盘文件中的数据读取出来,然后依次写入最终的磁盘文件之中。此外,由于一个task就只对应一个磁盘文件,也就意味着该task为下游stage的task准备的数据都在这一个文件中,因此还会单独写一份索引文件,其中标识了下游各个task的数据在文件中的start offset与end offset。

SortShuffleManager由于有一个磁盘文件merge的过程,因此大大减少了文件数量。比如第一个stage有50个task,总共有10个Executor,每个Executor执行5个task,而第二个stage有100个task。由于每个task最终只有一个磁盘文件,因此此时每个Executor上只有5个磁盘文件,所有Executor只有50个磁盘文件。

普通运行机制的SortShuffleManager工作原理如图所示:

Spark Shuffle解析_数据_03


图普通运行机制的SortShuffleManager工作原理

3.1.1. bypass运行机制

bypass运行机制的触发条件如下:

· shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold参数的值。

· 不是聚合类的shuffle算子。

此时,每个task会为每个下游task都创建一个临时磁盘文件,并将数据按key进行hash然后根据key的hash值,将key写入对应的磁盘文件之中。当然,写入磁盘文件时也是先写入内存缓冲,缓冲写满之后再溢写到磁盘文件的。最后,同样会将所有临时磁盘文件都合并成一个磁盘文件,并创建一个单独的索引文件。

该过程的磁盘写机制其实跟未经优化的HashShuffleManager是一模一样的,因为都要创建数量惊人的磁盘文件,只是在最后会做一个磁盘文件的合并而已。因此少量的最终磁盘文件,也让该机制相对未经优化的HashShuffleManager来说,shuffle read的性能会更好。

而该机制与普通SortShuffleManager运行机制的不同在于:第一,磁盘写机制不同;第二,不会进行排序。也就是说,启用该机制的最大好处在于,shuffle write过程中,不需要进行数据的排序操作,也就节省掉了这部分的性能开销。

bypass运行机制的SortShuffleManager工作原理如图1-10所示:

Spark Shuffle解析_数据结构_04

bypass运行机制的SortShuffleManager工作原理

标签:文件,task,Shuffle,shuffle,Executor,磁盘,Spark,解析,stage
From: https://blog.51cto.com/u_15130867/6028150

相关文章

  • spring boot——json解析示例——fastjson
    多层嵌套JSON类型数据解析简单来说:“key”:“value”-->此时value为String “key":0-->此时value为int “key”:{“k1”:“v1”}-->此时value为JSONObject......
  • Java(FastJson) 解析 JSON文件
    依赖<dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.73</version></dependency>JSON文件内容publicclassMy......
  • xml解析_解析方式、常见的解析器
    xml解析_解析方式解析:操作xml文档,将文档中的数据读取到内存中操作xml文档解析(读取):将文档中的数据读取到内存中写入:将内存中的数据保存到xml文档......
  • 分辨率/图像解析度(Resolution)
    分辨率/图像解析度(Resolution)QSIF/QQVGA160*120192002万像素QCIF176*144253442.5万像素SIF/QVGA320*240768008万像素CIF352*288101376......
  • IO多路复用完全解析
    上一篇文章以近乎啰嗦的方式详细描述了BIO与非阻塞IO的各种细节。如果各位还没有读过这篇文章,强烈建议先阅读一下,然后再来看本篇,因为逻辑关系是层层递进的。1.多路复用......
  • (转)golang flag包(命令行参数解析)
    原文:https://blog.csdn.net/u012206617/article/details/1059074441.1使用示例:我们以nginx为例,执行nginx-h,输出如下:nginxversion:nginx/1.10.0Usage:nginx[-?hv......
  • 域名解析与智能选路&源/目的网络地址转换SANT
           ......
  • 05-DALVIK加载和解析DEX过程
    5.1 dex和odex文件结构和关系      上图是Dex文件和Odex文件的结构和关系图。    应用程序在第一次启动app的时候,会在/dalvik/dalvik-cache目录下生成odex......
  • Spark 通讯架构和调度
    1、Spark通讯架构1.1Spark通信架构概述Spark2.x版本使用Netty通讯框架作为内部通讯组件。spark基于netty新的rpc框架借鉴了Akka的中的设计,它是基于Actor模型,如下图所示:图......
  • BufferImage中TYPE_BYTE_INDEXED解析
    翻译自:https://www.drububu.com/tutorial/image-types.htmlIndexedColorImages章节 索引彩色图像使用了一个有着有限数量颜色的表格。在gif图片中,最大的颜色数量是......