首页 > 其他分享 >全局负采样-minbatch负采样

全局负采样-minbatch负采样

时间:2023-01-30 14:58:51浏览次数:131  
标签:采样 loss emb self mask num minbatch tf 全局

参考:https://developer.aliyun.com/article/873405

def softmax_loss_with_negative_mining(user_emb,
                                      item_emb,
                                      labels,
                                      num_negative_samples=4,
                                      embed_normed=False,
                                      weights=1.0,
                                      gamma=1.0,
                                      margin=0,
                                      t=1):
  """Compute the softmax loss based on the cosine distance explained below.
  Given mini batches for `user_emb` and `item_emb`, this function computes for each element in `user_emb`
  the cosine distance between it and the corresponding `item_emb`,
  and additionally the cosine distance between `user_emb` and some other elements of `item_emb`
   (referred to a negative samples).
  The negative samples are formed on the fly by shifting the right side (`item_emb`).
  Then the softmax loss will be computed based on these cosine distance.
  Args:
    user_emb: A `Tensor` with shape [batch_size, embedding_size]. The embedding of user.
    item_emb: A `Tensor` with shape [batch_size, embedding_size]. The embedding of item.
    labels: a `Tensor` with shape [batch_size]. e.g. click or not click in the session. It's values must be 0 or 1.
    num_negative_samples: the num of negative samples, should be in range [1, batch_size).
    embed_normed: bool, whether input embeddings l2 normalized
    weights: `weights` acts as a coefficient for the loss. If a scalar is provided,
      then the loss is simply scaled by the given value. If `weights` is a
      tensor of shape `[batch_size]`, then the loss weights apply to each corresponding sample.
    gamma: smooth coefficient of softmax
    margin: the margin between positive pair and negative pair
    t: coefficient of support vector guided softmax loss
  Return:
    support vector guided softmax loss of positive labels
  """
  batch_size = get_shape_list(item_emb)[0]
  assert 0 < num_negative_samples < batch_size, '`num_negative_samples` should be in range [1, batch_size)'
  if not embed_normed:
    user_emb = tf.nn.l2_normalize(user_emb, axis=-1)
    item_emb = tf.nn.l2_normalize(item_emb, axis=-1)
  vectors = [item_emb]
  for i in range(num_negative_samples):
    shift = tf.random_uniform([], 1, batch_size, dtype=tf.int32)
    neg_item_emb = tf.roll(item_emb, shift, axis=0)
    vectors.append(neg_item_emb)
  # all_embeddings's shape: (batch_size, num_negative_samples + 1, vec_dim)
  all_embeddings = tf.stack(vectors, axis=1)
  mask = tf.greater(labels, 0)
  mask_user_emb = tf.boolean_mask(user_emb, mask)
  mask_item_emb = tf.boolean_mask(all_embeddings, mask)
  if isinstance(weights, tf.Tensor):
    weights = tf.boolean_mask(weights, mask)
  # sim_scores's shape: (num_of_pos_label_in_batch_size, num_negative_samples + 1)
  sim_scores = tf.keras.backend.batch_dot(
      mask_user_emb, mask_item_emb, axes=(1, 2))
  pos_score = tf.slice(sim_scores, [0, 0], [-1, 1])
  neg_scores = tf.slice(sim_scores, [0, 1], [-1, -1])
  loss = support_vector_guided_softmax_loss(
      pos_score, neg_scores, margin=margin, t=t, smooth=gamma, weights=weights)
  return loss
def support_vector_guided_softmax_loss(pos_score,
                                       neg_scores,
                                       margin=0,
                                       t=1,
                                       smooth=1.0,
                                       threshold=0,
                                       weights=1.0):
  """Refer paper: Support Vector Guided Softmax Loss for Face Recognition (https://128.84.21.199/abs/1812.11317)."""
  new_pos_score = pos_score - margin
  cond = tf.greater_equal(new_pos_score - neg_scores, threshold)
  mask = tf.where(cond, tf.zeros_like(cond, tf.float32),
                  tf.ones_like(cond, tf.float32))  # I_k
  new_neg_scores = mask * (neg_scores * t + t - 1) + (1 - mask) * neg_scores
  logits = tf.concat([new_pos_score, new_neg_scores], axis=1)
  if 1.0 != smooth:
    logits *= smooth
  loss = tf.losses.sparse_softmax_cross_entropy(
      tf.zeros_like(pos_score, dtype=tf.int32), logits, weights=weights)
  # set rank loss to zero if a batch has no positive sample.
  loss = tf.where(tf.is_nan(loss), tf.zeros_like(loss), loss)
  return loss

pariwise Loss实现

def pairwise_loss(labels, logits):
  pairwise_logits = tf.expand_dims(logits, -1) - tf.expand_dims(logits, 0)
  logging.info('[pairwise_loss] pairwise logits: {}'.format(pairwise_logits))
  pairwise_mask = tf.greater(
      tf.expand_dims(labels, -1) - tf.expand_dims(labels, 0), 0)
  logging.info('[pairwise_loss] mask: {}'.format(pairwise_mask))
  pairwise_logits = tf.boolean_mask(pairwise_logits, pairwise_mask)
  logging.info('[pairwise_loss] after masking: {}'.format(pairwise_logits))
  pairwise_pseudo_labels = tf.ones_like(pairwise_logits)
  loss = tf.losses.sigmoid_cross_entropy(pairwise_pseudo_labels,
                                         pairwise_logits)
  # set rank loss to zero if a batch has no positive sample.
  loss = tf.where(tf.is_nan(loss), tf.zeros_like(loss), loss)
  return los

 

采用抽样的softmax损失函数-SampledSoftmaxLayer

class SampledSoftmaxLayer(keras.layers.Layer):
    def __init__(self, num_sampled=5, **kwargs):
        self.num_sampled = num_sampled
        super(SampledSoftmaxLayer, self).__init__(**kwargs)

    def build(self, input_shape):
        print(input_shape)
        self.size = input_shape[0][0]
        self.zero_bias = self.add_weight(shape=[self.size],
                                         initializer=keras.initializers.Zeros,
                                         dtype=tf.float32,
                                         trainable=False,
                                         name="bias")
        super(SampledSoftmaxLayer, self).build(input_shape)

    def call(self, inputs_with_label_idx, training=None, **kwargs):

        embeddings, inputs, label_idx = inputs_with_label_idx

        loss = tf.nn.sampled_softmax_loss(weights=embeddings,  # self.item_embedding.
                                          biases=self.zero_bias,
                                          labels=label_idx,
                                          inputs=inputs,
                                          num_sampled=self.num_sampled,
                                          num_classes=self.size,  # self.target_song_size
                                          )

        return tf.expand_dims(loss, axis=1)

    def compute_output_shape(self, input_shape):
        return (None, 1)

    def get_config(self, ):
        config = {'num_sampled': self.num_sampled}
        base_config = super(SampledSoftmaxLayer, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

# output=SampledSoftmaxLayer()([embeddings,inputs,label_idx])
# output

 

标签:采样,loss,emb,self,mask,num,minbatch,tf,全局
From: https://www.cnblogs.com/demo-deng/p/17075901.html

相关文章