首页 > 其他分享 >POJ--3169 Layout(最短路)

POJ--3169 Layout(最短路)

时间:2023-01-30 12:55:27浏览次数:58  
标签:MD Layout -- MAX ++ int POJ ML INF

记录
12:36 2023-1-30

http://poj.org/problem?id=3169

reference:《挑战程序设计竞赛(第2版)》2.5.6 p111

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

最短路径问题。将距离关系等式表达出来后,发现和最短路问题的表达形式一样,所以转化为了最短路问题。需要注意的是,存在负边,所以不能使用dijkstra,要使用Bellman-Ford算法。这个问题关键的部分是要将关系等式看懂并联系到最短路上,而且使用最短路计算出的最短距离就是1号与N号之间的最大距离,因为计算的时候使用的是关系好之间的最大值,关系差之间的最小值一些约束不等式的题可以转化为最短路问题

#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define MAX_ML 10000
#define MAX_MD 10000
#define MAX_N 10000

const int INF = 0x3f3f3f3f;

int N, ML, MD;
int AL[MAX_ML], BL[MAX_ML], DL[MAX_ML];
int AD[MAX_MD], BD[MAX_MD], DD[MAX_MD];

int d[MAX_N];

void solve() {
    fill(d, d + N, INF);
    d[0] = 0;

    //Bellman-Ford
    for(int k = 0; k < N; k++) {
        for(int i = 0; i + 1 < N; i++) {
            if(d[i + 1] < INF) d[i] = min(d[i], d[i + 1]);
        }

        for(int i = 0; i < ML; i++) {
            if(d[AL[i] - 1] < INF)
                d[BL[i] - 1] = min(d[BL[i] - 1], d[AL[i] - 1] + DL[i]);
        }

        for(int i = 0; i < MD; i++) {
            if(d[BD[i] - 1] < INF)
                d[AD[i] - 1] = min(d[AD[i] - 1], d[BD[i] - 1] - DD[i]);
        }
    }

    int res = d[N - 1];
    if(d[0] < 0) {
        //存在负圈
        res = -1;
    } else if (res == INF) {
        res = -2;
    }
    printf("%d\n", res);
}

int main() {
    scanf("%d %d %d", &N, &ML, &MD);
    for(int i = 0; i < ML; i++) {
        scanf("%d %d %d", &AL[i], &BL[i], &DL[i]);
    }

    for(int i = 0; i < MD; i++) {
        scanf("%d %d %d", &AD[i], &BD[i], &DD[i]);
    }

    solve();
}

标签:MD,Layout,--,MAX,++,int,POJ,ML,INF
From: https://www.cnblogs.com/57one/p/17075133.html

相关文章

  • 数据标注工具大合集
    图片拉框labelimg--已经安装bbox-label-toolLabelBoundingBoxYolo_markFastAnnotationToolod-annotationRectLabelcvatVoTTVIA-VGGimageAnnotatorPixelAnn......
  • HTML中dialog元素的使用
    1.直接贴代码<!DOCTYPEhtml><htmllang="en"><head><metacharset="UTF-8"><metahttp-equiv="X-UA-Compatible"content="IE=edge"><metaname="view......
  • 智慧公安!3DCAT实时云渲染助力某公安机关打造数字孪生可视化系统
    近年来,随着大数据、数字孪生、云计算、人工智能等技术的飞速发展,数字化浪潮席卷全国各地公安系统。2022年全国公安工作会议中也提到,数字化改革是推动公安工作创新发展的大......
  • 2023 教育孩子的唯一方法
    做智慧家长爱学习,会学习,能学习 01 02  03"什么是真正的“学习”" 2.先体会学习的快乐,建立目标,才会有学习痛苦3.学以致用,才会明白学习的快乐-家长在学......
  • 第一次学
    Markdown学习标题三级标题四级标题 字体hi,world!hi,world!hi,world!hi,world! 引用选择学习说,走上人生巅峰 分割线  图片   超链接......
  • C#调用C++动态链接库dll之P/Invoke方式 — 2.在C#控制台程序中调试C++动态链接库
    很简单1.C#控制台项目右键-属性-生成-允许不安全代码-打勾;2.C#控制台项目右键-属性-调试-启用本地代码调试-打勾;......
  • 记录几个正态分布相关的函数(从GSL里拷贝出来的)
    做芯片测试经常需要分析很多的数据,而正态分布应用最多,这些函数电子表格软件中都有,但是写在测试程序里,直接生成报告会更爽一些,尤其是遇到需要反复验证数据的情况。///////......
  • k8s部署nginx-ingress
    Kubernetes暴露服务的有三种方式,分别为LoadBlancerService、NodePortService、Ingress。官网对Ingress的定义为管理对外服务到集群内服务之间规则的集合,通俗点讲就是......
  • airlift java rest 服务框架
    airlift是一个轻量,快速的javarest服务开发框架,属于trino的基础框架,airlift集成了不少轻量的工具包同时包含了不少不错的实践(比如配置管理,组件生命周期管理,http客户端,......
  • mysql索引类型及操作
    一、索引主要类型PRIMARYKEY(主键索引)UNIQUE(唯一索引)INDEX(普通索引)FULLTEXT(全文索引)索引创建的通用语法altertable表名addindex索引名称(数据库字段名称);......