B. Emordnilap
原题链接
A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array), and [1,3,4] is also not a permutation (n=3 but there is 4 in the array). There are n!=n⋅(n−1)⋅(n−2)⋅…⋅1 different permutations of length n.
Given a permutation p of n numbers, we create an array a consisting of 2n numbers, which is equal to p concatenated with its reverse. We then define the beauty of p as the number of inversions【颠倒】 in a.
The number of inversions in the array a is the number of pairs of indices i, j such that i
For example, for permutation p=[1,2], a would be [1,2,2,1]. The inversions in a are (2,4) and (3,4) (assuming 1-based indexing). Hence, the beauty of p is 2.
Your task is to find the sum of beauties of all n! permutations of size n. Print the remainder we get when dividing this value by 1000000007 (109+7).
Input
Each test contains multiple test cases. The first line contains the number of test cases t (1≤t≤105). The description of the test cases follows.
Each test case has only one line — the integer n (1≤n≤105).
It is guaranteed that the sum of n over all test cases does not exceed 105.
Output
For each test case, print one integer — the sum of beauties of all permutations of size n modulo 1000000007 (109+7).
Example
input
3
1
2
100
output
0
4
389456655
Note
For the first test case of the example, p=[1] is the only permutation. a=[1,1] has 0 inversions.
For the second test case of the example, the permutations are [1,2] and [2,1]. Their respective a arrays are [1,2,2,1] and [2,1,1,2], both of which have 2 inversions.
题意
- 给出一个n,求长度为n的排列经过反转拼接后得到的数组中颠倒的数目,求出n!种排列的情况得到的总和取模1000000007的值
思路
- 无论是哪一种排列情况颠倒数目都是相同的(\(n*(n-1)\))
因此无论怎么排列,每两个不同的数\(i,j\)总会是\(2\)的颠倒贡献值
\(2*\frac{n*(n-1)}{2} = n*(n-1)\)
- 为什么?
我们可以只看排列中的两个元素,假设\(i<j\),则反转得到的新下标\(i_{reverse} > j_{reverse}\)
即\(i<j < j_{reverse} < i_{reverse}\)
①如果\(p_i < p_j\),得到贡献为2
②如果\(p_i > p_j\),得到贡献为2
因此无论怎么排列,每两个不同的数\(i,j\)总会是\(2\)的颠倒贡献值
- 总共有n!中排列情况
- 原题答案为\(n!*n*(n+1) mod 1000000007\)
代码
点击查看代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
#define X first
#define Y second
typedef long long LL;
const char nl = '\n';
const int N = 1e6+10;
LL n;
//int a[N];
int cnt[N];
int p = 1e9+7;
void solve(){
cin >> n;
LL res = n*(n-1)%p;
if(n == 1)cout << 0 << nl;
else{
for(int i = 1; i <= n; i ++){
res *= i;
res %= p;
}
//res *= res;
res %= p;
cout << res << nl;
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
int T;
cin >> T;
while(T --){
solve();
}
//solve();
}
陌生单词
- indices【下标】