In this problem, a tree is an undirected graph that is connected and has no cycles.
You are given a graph that started as a tree with n
nodes labeled from 1
to n
, with one additional edge added. The added edge has two different vertices chosen from 1
to n
, and was not an edge that already existed. The graph is represented as an array edges
of length n
where edges[i] = [ai, bi]
indicates that there is an edge between nodes ai
and bi
in the graph.
Return an edge that can be removed so that the resulting graph is a tree of n
nodes. If there are multiple answers, return the answer that occurs last in the input.
Example 1:
Input: edges = [[1,2],[1,3],[2,3]] Output: [2,3]
Example 2:
Input: edges = [[1,2],[2,3],[3,4],[1,4],[1,5]] Output: [1,4]
Constraints:
n == edges.length
3 <= n <= 1000
edges[i].length == 2
1 <= ai < bi <= edges.length
ai != bi
- There are no repeated edges.
- The given graph is connected.
冗余连接。
树可以看成是一个连通且 无环 的 无向 图。
给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。
请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的边。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/redundant-connection
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路是并查集。这是一道典型的并查集的题目。题目说给了一棵树但是多一条边,注意如果是树的话,如果节点数为 n 的话,那么边的数量是 n - 1。
我们用并查集的模板代码去遍历每条边,每条边都有两个端点 node,我们用并查集的方法去找每个 node 的父节点并记录下来。当我们遍历到某条边,发现这条边上的两个 node 的父节点是一样的时候,就说明这条边是多余的。
时间O(nlogn) - n个点,每个点找自己的父节点的复杂度 ≈ logn
空间O(n)
Java实现
1 class Solution { 2 public int[] findRedundantConnection(int[][] edges) { 3 int[] parent = new int[2001]; 4 for (int i = 0; i < parent.length; i++) { 5 parent[i] = i; 6 } 7 8 for (int[] e : edges) { 9 int from = e[0]; 10 int to = e[1]; 11 if (find(from, parent) == find(to, parent)) { 12 return e; 13 } 14 union(from, to, parent); 15 } 16 return new int[2]; 17 } 18 19 private int find(int node, int[] parent) { 20 while (node != parent[node]) { 21 node = parent[node]; 22 } 23 return node; 24 } 25 26 private void union(int a, int b, int[] parent) { 27 int aRoot = find(a, parent); 28 int bRoot = find(b, parent); 29 if (aRoot == bRoot) { 30 return; 31 } 32 parent[aRoot] = bRoot; 33 } 34 }
标签:node,parent,int,graph,节点,Connection,edges,684,LeetCode From: https://www.cnblogs.com/cnoodle/p/17064185.html