题目
题目链接:https://leetcode.cn/problems/search-insert-position/
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
题解
方法一:二分查找
思路与算法
假设题意是叫你在排序数组中寻找是否存在一个目标值,那么训练有素的读者肯定立马就能想到利用二分法在 \(O(\log n)\) 的时间内找到是否存在目标值。但这题还多了个额外的条件,即如果不存在数组中的时候需要返回按顺序插入的位置,那我们还能用二分法么?答案是可以的,我们只需要稍作修改即可。
考虑这个插入的位置 \(\textit{pos}\),它成立的条件为:
\[\textit{nums}[pos-1]<\textit{target}\le \textit{nums}[pos] \]其中 \(\textit{nums}\)代表排序数组。由于如果存在这个目标值,我们返回的索引也是 \(\textit{pos}\),因此我们可以将两个条件合并得出最后的目标:「在一个有序数组中找第一个大于等于 \(\textit{target}\)的下标」。
问题转化到这里,直接套用二分法即可,即不断用二分法逼近查找第一个大于等于 \(\textit{target}\) 的下标 。下文给出的代码是笔者习惯的二分写法,\(\textit{ans}\) 初值设置为数组长度可以省略边界条件的判断,因为存在一种情况是 \(\textit{target}\) 大于数组中的所有数,此时需要插入到数组长度的位置。
class Solution {
public int searchInsert(int[] nums, int target) {
int n = nums.length;
int left = 0, right = n - 1, ans = n;
while (left <= right) {
int mid = ((right - left) >> 1) + left;
if (target <= nums[mid]) {
ans = mid;
right = mid - 1;
} else {
left = mid + 1;
}
}
return ans;
}
}
复杂度分析
- 时间复杂度:\(O(\log n)\),其中 n 为数组的长度。二分查找所需的时间复杂度为 \(O(\log n)\)。
- 空间复杂度:\(O(1)\)。我们只需要常数空间存放若干变量。