首页 > 其他分享 >电子设计教程33:RC桥式正弦波振荡电路

电子设计教程33:RC桥式正弦波振荡电路

时间:2023-01-11 14:03:14浏览次数:49  
标签:输出 33 选频 电路 RC 振荡电路 电子设计 放大


  可以把同相比例运算电路接在RC串并联选频网络后,形成RC桥式正弦波振荡电路。运放电路要求输入与输出相位相同。

此电路也称为文氏桥振荡电路。所谓桥式电路,是一种电路类型,是在两个并联支路当中各支路的中间节点(通常是两元器件之间连线的一点)插入一个支路,来将两个并联支路桥接起来的电路。

电子设计教程33:RC桥式正弦波振荡电路_电路设计


  观察电路,同相比例运算电路中的R1,Rf,与选频网络中的串联RC,并联RC,都是一个桥臂,组成了这个RC桥式正弦波振荡电路。已知同相比例运算电路的输出与输入电压关系如下:

电子设计教程33:RC桥式正弦波振荡电路_运放_02


  在放大倍数为3倍的时候可以实现幅值平衡。即

电子设计教程33:RC桥式正弦波振荡电路_电路设计_03


  在此电路中,RC串并联选频网络需要把自身的输出,作为输入,用来维持振荡,这是正反馈;但是RC串并联选频网络的输出只有输入的1/3,需要借助放大电路,实现3倍放大,放大电路要控制放大倍数,就需要引入负反馈。故此电路同时存在正反馈与负反馈,它以RC串并联网络作为选频网络和正反馈网络,以包含负反馈的同相比例运算电路为放大环节。

  在真实的电路设计中,需要考虑放大倍数的问题:如果放大倍数略小于3倍,那么反馈给选频网络的电压,不足以维持RC振荡,导致振荡幅度越变越小;如果放大倍数略大于3倍,那么反馈给选频网络的电压,超过了它所需要的电压,流入放大电路的电压当然也超过了预期,这会导致放大电路达到极限的幅值,波形削顶或者削底;如果放大倍数正好是3倍,且不说考虑到器件的精确度,这是多么难的一件事情,正好是3倍的话,振荡电路不容易起振,因为起振靠的就是各种扰动,如上电合闸一瞬间的脉冲。这个问题似乎是无解的。

一种解决思路是,在电路中加入“非线性”环节。例如在反馈回路中加入两个并联的二极管。如果输出电压因为某种原因变大,那么流过二极管的电流变大,但是根据二极管的伏安特性曲线可以知道,此二极管的“动态电阻”减小,导致放大倍数减小,最终使输出电压稳定。这个过程类似于负反馈调节。

  但这种做法是有弊端的,输出波形可能轻微失真。只要引入非线性环节,这种失真就不可避免,不管是用二极管,还是热敏电阻作为非线性环节都不行。如果使用Mos管,失真的情况可能会改善,但是电路设计会变得复杂很多。在电路设计领域,有一利必有一弊。

  如果想输出0V左右的交流信号,需要引入正负电源,为了简化设计,我们把正弦波的平均值设定为2.5V左右,并用TL431电路提供2.5V电压。

  为了便于精确调整放大倍数,观察放大现象,把反馈电阻设置为可调电位器。由此得到RC正弦波信号源电路设计:

电子设计教程33:RC桥式正弦波振荡电路_运放_04


  下图是加入非线性环节时,运放的同相输入端与输出端的波形对比。可以看出运放确实把波形放大了3倍,但是输出波形的“腰部”略有失真。

电子设计教程33:RC桥式正弦波振荡电路_运放_05


  去掉非线性环节时,需要是放大倍数略大于3倍,可以看出输出波形的顶部与底部都被削平了。实际上这个输出的状态并不稳定,甚至轻轻敲一敲电路板,都会导致输出波形有变化。

电子设计教程33:RC桥式正弦波振荡电路_电路设计_06


  此设计中输出电压由运放的工作电压决定,输出频率由选频网络电阻与电容的值决定。有些设计会把电阻与电容设为可调的,以实现频率可调。若追求更好的正弦波质量,或者更高频的振荡频率时,可以选用LC振荡电路,或者石英晶体振荡电


标签:输出,33,选频,电路,RC,振荡电路,电子设计,放大
From: https://blog.51cto.com/u_12001544/6002223

相关文章

  • 电子设计教程31:电容与电感对相位的影响
      相位,指的是某个波形,在特定时间的位置,比如正弦波,当相位达到最高点的时候,我们称之为波峰。假设有一个正弦波电压通过某个电阻,我们把电流记录下来与电压对比,很容易想象到这......
  • 电子设计教程29:滞回比较器(施密特触发器)
      为系统增加滞回控制,可以让系统对于微小变化不那么敏感,增强系统的抗干扰能力。本文讨论如何滞回比较器的原理。单限比较器  比较器一般来说只输出高低电平,如果运放用作......
  • 电子设计教程30:温度滞回控制系统
      本节我们用滞回比较器的原理,设置一个温度滞回控制系统,让散热风扇在温度高于40℃时启动,在温度低于25℃时停止。  我用的温度传感器应用的是TPM235,在温度大于0℃的时候......
  • 电子设计教程28:电流采样电阻与开尔文接法
      电流经过电阻会产生电压。可以把阻值较小的电阻,串联在被测电路中,把电流转换为电压信号进行测量。这个电阻被称为采样电阻(也称分流电阻、感应电阻)。  采样电阻通常阻......
  • 电子设计教程24:反相比例运算电路
      注意是反相而不是反向。  反相比例运算电路中,输入信号u_I通过电阻接到反相输入端,输出信号u_O通过一个反馈电阻接到反相输入端。同相输入端通过电阻接地。  电路中......
  • 电子设计教程9:Boost升压电路(MC34063)
      Boost本身是一个单词,有“促进、增加”的含义。在电子设计中,Boost是一种升压电路。  一节电池是1.5V,两节电池串联起来,就有3V。Boost升压变换器的原理,就是把储能元件电......
  • 电子设计教程10:电荷泵倍压输出电路
      电荷泵设计非常巧妙,只需要几个简单的器件,就能实现倍压或者负压。电荷泵,也称为开关电容式电压变换器,它通过电容对电荷的积累效应而产生高压,使电流逆势由低电势流向高电势......
  • 电子设计教程11:电荷泵负压输出电路
      参考电荷泵倍压输出电路,把参考电压由Vcc改为GND,即可得到电荷泵负压输出电路。  当Vin为高电平Vh时,T1测试点的电压VT1是GND(为了简便起见,忽略二极管的压降)Vin为电容C1......
  • 电子设计教程12:Buck降压电路
      我们仍然使用MC34063芯片,来设计一个DC-DC降压电路,实现直流12V转5V。Buck变换器  Buck变换器是开关电源基本拓扑结构的一种,Buck变换器又称为降压变换器,是一种对输入电......
  • 电子设计教程13:反相Buck变换器
      Buck变换器是开关电源基本拓扑结构的一种,在此基础上增加负压输出的功能,甚至比电荷泵电路还要简单。  反相Buck变换器的英文称呼是“InvertingBuck-Boost”,直译过来......